Reviews

Effects of connections of exposed steel anchor boxes on the mechanical behavior of pylon anchorage system

  • LU Wenru ,
  • ZHAO Yi ,
  • ZHAO Min ,
  • TAN Donglian
Expand
  • 1. School of Civil Engineering, Henan University of Technology, Zhengzhou 450001, China;
    2. Highway School, Chang'an University, Xi'an 710064, China;
    3. School of Civil and Architectural Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China;
    4. School of Civil Engineering, Qingdao Technological University, Qingdao 266000, China;
    5. School of Railway Transportation, Shanghai Institute of Technology, Shanghai 201418, China

Received date: 2015-02-09

  Revised date: 2015-09-10

  Online published: 2016-02-04

Abstract

This paper aims to study the mechanical characteristics and load transfer mode of pylon anchor system with steel anchor boxes. Taking the north navigable bridge of Hangzhou Bay cross-sea bridge as an example, we analyzed the mechanical behavior and cable force distribution pattern influenced by the connections of steel anchor boxes using finite element analysis (ANSYS 11.0). The results show that when the connection of the steel anchor box is transformed, the transferring force of the anchorage segment and its components are changed slightly, the vertical force transmitted by the anchorage segment has no change, while the vertical force transmitted by the steel anchorage box and pylon wall are changed evidently. Whether the steel anchor box is connected has a great influence on the distribution laws of the stress on the steel plate and concrete pylon wall and the shear force on studs. The stress on the steel plate and concrete pylon wall and the shear force on studs are more evenly distributed in connected steel anchor boxes than those in separated ones. The stress distribution pattern of the side plate and diaphragm are impacted slightly by the connection of steel anchor boxes, while that of the end plate and pylon wall are impacted significantly.

Cite this article

LU Wenru , ZHAO Yi , ZHAO Min , TAN Donglian . Effects of connections of exposed steel anchor boxes on the mechanical behavior of pylon anchorage system[J]. Science & Technology Review, 2016 , 34(2) : 265 -270 . DOI: 10.3981/j.issn.1000-7857.2016.2.045

References

[1] 俞先林, 张奇志. 钢-混组合索塔锚固结构节段模型试验研究[J]. 铁道建筑, 2008(8): 16-18. Yu Xianlin, Zhang Qizhi. Research segment model test on steel-con-crete composite cable pylon anchorage[J]. Railway Engineering, 2008 (8): 16-18.
[2] 曾明根, 苏庆田, 邵长宇, 等. 公轨共用大跨斜拉桥索塔锚固区节段试验研究[J]. 中国铁道科学, 2008, 29(4): 53-57. Zeng Minggen, Su Qingtian, Shao Changyu, et al. Test study on the ca-ble-pylon anchorage zone of highway and light railway long-span ca-ble-stayed bridge[J]. China Railway Science, 2008, 29(4): 53-57.
[3] 胡贵琼, 童智洋, 郑平伟, 等. 鄂东长江公路大桥索塔锚固区节段模型试验研究[J]. 桥梁建设, 2009(增2): 55-60. Hu Guiqiong, Tong Zhiyang, Zheng Pingwei, et al. sectional model test study of cable-to-pylon anchorage zone of edong changjiang river high-way bridge[J]. Bridge Construction, 2009(Suppl 2): 55-60.
[4] 张奇志, 李明俊. 斜拉桥钢-混组合索塔锚固区节段模型试验研究[J]. 桥梁建设, 2006(3): 16-19. Zhang Qizhi, Li Mingjun. Segmental model test study of steel and con-crete composite anchor zone on pylon of cable-stayed bridge[J]. Bridge Construction, 2006(3): 16-19.
[5] 汪昕, 吕志涛. 斜向索力下钢混凝土组合索塔锚固区荷载传递与分配关系分析[J]. 东南大学学报: 自然科学版, 2006, 36(4): 585-589. Wang Xin, Lü Zhitao. Analysis of load transferring and distribution in anchorage zone of steel-concrete composite pylon under inclined cable forces[J]. Journal of Southeast University: Natural Science Edition, 2006, 36(4): 585-589.
[6] 郑舟军, 田晓彬, 余俊林, 等. 内置式钢锚箱索塔锚固区受力机理分析[J]. 中国公路学报, 2010, 23(5): 84-89. Zheng Zhoujun, Tian Xiaobin, Yu Junlin, et al. Analysis of mechanism of pylon anchorage zones with built-in steel-anchor-box[J]. China Jour-nal of Highway and Transport, 2010, 23(5): 84-89.
[7] 徐海军, 刘玉擎, 李炀, 等. 外露型钢锚箱索塔锚固结构受力机理试验[J]. 同济大学学报: 自然科学版, 2014, 42(5): 672-676. Xu Haijun, Liu Yuqing, Li Yang, et al. Experimental study on stress mechanism of exposed steel anchor box cable-tow anchorage[J]. Journal of Tongji University: Natural Science, 2014, 42(5): 672-676.
[8] 冯凌云, 苏庆田, 吴冲. 大跨度斜拉桥混凝土索塔钢锚箱的计算模型研究[J]. 现代交通技术, 2005(4): 26-29. Feng Lingyun, Su Qingtian, Wu Chong. Calculation method of concrete pylon with steel anchor box in long-span cable-stayed bridge[J]. Mod-ern Transportation Technology, 2005(4): 26-29.
[9] Su Q T, Yang G T, Qin F. Investigation on the horizontal mechanical behavior of steel-concrete composite cable-pylon anchorage[J]. Journal of Constructional Steel Research, 2012, 72(2): 267-275.
[10] 曾明根, 苏庆田, 吴冲. 连接形式对斜拉桥组合索塔钢锚箱剪力钉受力的影响[J]. 桥梁建设, 2008(1): 47-49. Zeng Minggen, Su Qingtian, Wu Chong. Effect of connections on shear stud mechanical behavior of steel anchor box in composite pylon of ca-ble-stayed bridge[J]. Bridge Construction, 2008(1): 47-49.
[11] 张喜刚, 刘玉擎. 组合索塔锚固结构[M]. 北京: 人民交通出版社, 2010. Zhang Xigang, Liu Yuqing. Cable-tower composite anchorage[M]. Bei-jing: China Communications Press, 2010.
[12] GB 50010-2002 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010. GB 50010-2002, Code for design of concrete structures[S]. Beijing: China Building Industry Press, 2010.
Outlines

/