Natural evaporation and crystallization of Bangor salt lake water in Tibet

  • YU Jiangjiang ,
  • ZHENG Mianping ,
  • WU Qian ,
  • WANG Yunsheng ,
  • NIE Zhen ,
  • BU Lingzhong
  • MLR Key Laboratory of Saline Lake Resources and Environments, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

Received date: 2015-05-26

  Revised date: 2015-08-12

  Online published: 2016-03-25


Considering the huge impact of global warming on lakes on Qinghai-Tibet Plateau and the serious lake desalination resulting from expanded lake area, the research on carbonate-type desalinated saline lakes is of great significance. Taking the carbonate-type salt lake of Bangor Lake as the research object, the on-spot natural evaporation experiment has explored the pH changes in lake water and the effect of alkali metal elements content on mineral separation under the guidance of 298 K metastable phase diagram of quinary system of Na+, K+/Cl-, SO42-, and CO32--H2O, Experimental results show that mineral deposits from desalinated lake water would be developed in a longer period in the context of natural evaporation. After a slow reduction process, the pH value of lake water is increased rapidly in the late stage of evaporation, which is mainly related to and positively correlated with the contents of CO32-, HCO3- and OH- in the lake water. Among the main alkali metal elements that affect the acid-base property of desalinated lake water, the role of Na exceeds that of K, followed by Li. Their corresponding minerals are also changed from neutral to alkali property; and the order of separated minerals is mirabilite, halite, aphthitalite, burkeite and trona. Based on the separation characteristics of different minerals, they can be recovered and extracted by stages, which is practically significant in the development of the salt lake resources.

Cite this article

YU Jiangjiang , ZHENG Mianping , WU Qian , WANG Yunsheng , NIE Zhen , BU Lingzhong . Natural evaporation and crystallization of Bangor salt lake water in Tibet[J]. Science & Technology Review, 2016 , 34(5) : 60 -66 . DOI: 10.3981/j.issn.1000-7857.2016.05.006


[1] 于昇松, 唐渊. 青藏高原盐湖的水化学特征[J]. 海洋与湖沼, 1981, 12(6):498-511. Yu Shengsong, Tang Yuan. The hydrochemical characteristics of the saline lake on the Qinghai-Tibet plateau[J]. Oceanologia et Limnologia Sinica, 1981, 12(6):498-511.
[2] 郑绵平, 刘喜方. 青藏高原盐湖水化学及其矿物组合特征[J]. 地质学报, 2010, 84(11):1585-1600. Zheng Mianping, Liu Xifang. Hydrochemistry and minerals assemblages of salt lakes in the Qinghai-Tibet Plateau, China[J]. Acta Geologica Sinica, 2010, 84(11):1585-1600.
[3] An J W, Kang D J, Tran K T, et al. Recovery of lithium from Uyuni salar brine[J]. Hydrometallurgy, 2012, 117(4):64-70.
[4] 宋彭生, 李武, 孙柏, 等. 盐湖资源开发利用进展[J]. 无机化学学报, 2011, 27(5):801-815. Song Pengsheng, Li Wu, Sun Bai, et al. Recent development on comprehensive utilization of salt lake resources[J]. Chinese Journal of Inorganic Chemistry, 2011, 27(5):801-815.
[5] Nie Z, Bu L, Zheng M, et al. Experimental study of natural brine solar ponds in Tibet[J]. Solar Energy, 2011, 85(7):1537-1542.
[6] Yu J, Zheng M, Wu Q, et al. Extracting lithium from Tibetan Dangxiong Tso Salt Lake of carbonate type by using geothermal salinity-gradient solar pond[J]. Solar Energy, 2015, 115:133-144.
[7] Zhu C, Dong Y, Yun Z, et al. Study of lithium exploitation from carbonate subtype and sulfate type salt-lakes of Tibet[J]. Hydrometallurgy, 2014, 149:143-147.
[8] Camoin G, Casanova J, Rouchy J, et al. Environmental controls on perennial and ephemeral carbonate lakes:the central palaeo-Andean Basin of Bolivia during Late Cretaceous to early Tertiary times[J]. Sedimentary Geology, 1997, 113(1/2):1-26.
[9] Last F M, Last W M. Lacustrine carbonates of the northern Great Plains of Canada[J]. Sedimentary Geology, 2012, 277-278:1-31.
[10] 曾英, 殷辉安, 唐明林, 等. 五元交互体系Li+, Na+, K+//CO32- Cl--H2O在298.15 K的相平衡研究[J]. 高等学校化学学报, 2003, 24(6):968-972. Zeng Ying, Yin Huian, Tang Minglin, et al. A Study of the phase equilibrium for quinary system Li+, Na+, K+//CO32-, Cl--H2O at 298.15 K[J]. Chemical Research in Chinese Universities, 2003, 24(6):968-972.
[11] 桑世华, 殷辉安, 曾英, 等. Li+, Na+//SO42-, CO32--H2O交互四元体系288 K介稳相平衡研究[J]. 化学学报, 2006, 64(22):2247-2253. Sang Shihua, Yin Huian, Zeng Ying, et al. Study on metastable equilibria in quaternary system Li+, Na+//SO42-, CO32--H2O at 288 K[J]. Acta Chimica Sinica, 2006, 64(22):2247-2253.
[12] Yu X, Yin Q, Jiang D, et al. Metastable equilibrium for the quaternary system containing with lithium+potassium+magnesium+chloride in aqueous solution at 323 K[J]. Korean Journal of Chemical Engineering, 2014, 31(6):1065-1069.
[13] Zhang G, Xie H, Kang S, et al. Monitoring lake level changes on the Tibetan Plateau using ICES at altimetry data (2003-2009)[J]. Remote Sensing of Environment, 2011, 115(7):1733-1742.
[14] 乜贞, 卜令忠, 郑绵平, 等. 西藏扎布耶碳酸盐型盐湖卤水相化学研究[J]. 地质学报, 2010, 84(4):587-592. Nie Zhen, Bu Lingzhong, Zheng Mianping, et al. Phase chemistry study on brine from the Zabuye Carbonate-Type salt lake in Tibet[J]. Acta Geologica Sinica, 2010, 84(4):587-592.
[15] 张永生, 郑绵平, 乜贞, 等. 西藏扎布耶盐湖碳酸盐型卤水15℃等温蒸发实验[J]. 海湖盐与化工, 2005, 34(4):1-5. Zhang Yongsheng, Zheng Mianping, Nie Zhen, et al. 15℃-isothermal evaporation experiment on carbonate-type brine from Zabuye salt lake, Tibet, Southwestern China[J]. Sea-lake Salt and Chemical Industry, 2005, 34(4):1-5.
[16] 伍倩, 郑绵平, 乜贞, 等. 西藏当雄错碳酸盐型盐湖卤水自然蒸发析盐规律研究[J]. 无机化学学报, 2012, 28(9):1895-1903. Wu Qian, Zheng Mianping, Nie Zhen, et al. Natural evaporation and crystallization regularity of Dangxiongcuo Carbonate-type salt lake brine in Tibet[J]. Chinese Journal of Inorganic Chemistry, 2012, 28(9):1895-1903.
[17] 伍倩, 郑绵平, 乜贞, 等. 西藏当雄错盐湖卤水冬季日晒蒸发实验研究[J]. 地质学报, 2013, 87(3):430-433. Wu Qian, Zheng Mianping, Nie Zhen, et al. Experiment study of solar evaporation of brine from the Dangxiongcuo salt lake in Tibet in winter[J]. Acta Geologica Sinica, 2013, 87(3):430-433.
[18] Liu J, Wang S, Yu S, et al. Climate warming and growth of highelevation inland lakes on the Tibetan Plateau[J]. Global and Planetary Change, 2009, 67(3/4):209-217.
[19] Wang X, Siegert F, Zhou A, et al. Glacier and glacial lake changes and their relationship in the context of climate change, Central Tibetan Plateau 1972-2010[J]. Global and Planetary Change, 2013, 111:246-257.
[20] Yu W, Yao T, Kang S, et al. Different region climate regimes and topography affect the changes in area and mass balance of glaciers on the north and south slopes of the same glacierized massif (the West Nyainqentanglha Range, Tibetan Plateau)[J]. Journal of Hydrology, 2013, 495:64-73.
[21] Goudie A S. Global warming and fluvial geomorphology[J]. Geomorphology, 2006, 79:384-394.
[22] Shi Y, Liu S. Estimation of the response of glaciers in China to the global warming in the 21st Century[J]. Chinese Science Bulletin, 1999, 45(7):668-672.
[23] 郑绵平, 向军. 青藏高原盐湖[M]. 北京:北京科学技术出版社, 1989:431. Zheng Mianping, Xiang Jun. Saline Lakes on the Qinghai-Xizang (Tibet) Plateau[M]. Beijing:Beijing Science and Technology Press, 1989:431.
[24] Yan L J, Zheng M P. Influence of climate change on saline lakes of the Tibet Plateau, 1973-2010[J]. Geomorphology, 2015, 246:68-78.
[25] 房春晖, 牛自得, 刘子琴, 等. Na+, K+//Cl-, SO42-, CO32--H2O五元体系25℃介稳相图的研究[J]. 化学学报, 1991(11):1062-1070. fang Chunhui, Niu Zide, Liu Ziqin, et al. Studies on the metastable phase diagram in the Quinary System Na+, K+//Cl-, CO32-, SO42--H2O at 25℃[J]. Acta Chimica Sinica, 1991(11):1062-1070.
[26] 乌志明, 崔香梅, 郑绵平. 盐湖卤水蒸发浓缩过程中pH值变化规律研究[J]. 无机化学学报, 2012, 28(2):297-301. Wu Zhiming, Cui Xiangmei, Zheng Mianping. pH value change trends in salt brine evaporation[J]. Chinese Journal of Inorganic Chemistry. 2012, 28(2):297-301.