Based on the geological research of Kelasu structural belt in Kuqa depression, we analyze tight sandstone gas reservoir properties of Dabei area by using microscope and laser scanning confocal microscope (LSCM) observation, mercury-injection capillary pressure (MICP) testing, and porosity and permeability testing. The results show the followings. The major pore types in tight sandstone gas reservoirs of Dabei area are slot pores and solution pores; Expulsion pressure of tight sandstone in the study area is generally above 5 MPa, with poor pore sorting and small pore throat radius; When the sandstone reservoir porosity is less than 5%, the correlation between porosity and permeability is weak, with small porosity and high permeability, which may be resulted from the contribution of micro-fractures in tight sandstone. The major rock type in Dabei gas field is feldspar lithic quartz sandstone, and it is dominated by calcite cementation. Besides, tight sandstone reservoir shows obvious fractures reconstruction.
FAN Junjia
,
LIU Shaobo
,
ZHANG Xi
,
ZHENG Yongping
,
LIU Ruilan
,
LI Xiuli
. Tight sandstone gas reservoir properties of Kelasu-structural belt in Kuqa-depression[J]. Science & Technology Review, 2016
, 34(7)
: 123
-128
.
DOI: 10.3981/j.issn.1000-7857.2016.07.012
[1] Dai Jinxing, Ni Yunyan, Wu Xiaoqi. Tight gas in China and its signifi-cance in exploration and exploitation[J]. Petroleum Exploration and De-velopment, 2012, 39(3):277-284.
[2] 郭秋麟, 陈宁生, 胡俊文, 等. 致密砂岩气聚集模型与定量模拟探讨[J]. 天然气地球科学, 2012, 23(2):199-207. Guo Qiulin,Chen Ningsheng, Hu Junwen, et al. Geo-model of tight sandstone gas accumulation and quantitative simulation[J]. Natural Gas Geoscience, 2012, 23(2):199-207.
[3] 张水昌, 米敬奎, 刘柳红, 等. 中国致密砂岩煤成气藏地质特征及成藏过程——以鄂尔多斯盆地上古生四川盆地须家河组气藏为例[J]. 石油勘探与开发, 2009, 36(3):320-330. Zhang Shuichang, Mi Jingkui, Liu Liuhong, et al. Geological features and formation of coal-formed tight sandstone gas pools in China:Cases from Upper Paleozoic gas pools, Ordos Basin and Xujiahe Formation gas pools, Sichuan Basin[J]. Petroleum Exploration and Development, 2009, 36(3):320-330.
[4] 李建忠, 郭彬程, 郑民, 等. 中国致密砂岩气主要类型、地质特征与资源潜力[J]. 天然气地球科学, 2012, 23(4):607-615. Li Jianzhong, Guo Bincheng, Zhen Min, et al. Main types, geological features and resource potential of tight sandstone gas in China[J]. Natu-ral Gas Geoscience, 2012, 23(4):607-615.
[5] Miller M, Shanley K. Petrophysics in tight gas reservoirs——key challeng-es still remain[J]. The Leading Edge, 2010, 29(12):1464-1469.
[6] Wang Z M, Long H S. Different hydrocarbon accumulation histories in the Kelasu-Yiqikelike structural belt of the Kuqa Foreland basin[J]. Ac-ta Geologica Sinica:English Edition, 2010, 84(5):1195-1208.
[7] Zou C N, Jia J H, Tao S Z, et al. Analysis of reservoir forming condi-tions and prediction of continuous tight gas reservoirs for the deep juras-sic in the Eastern Kuqa Depression, Tarim Basin[J]. Acta Geologica Si-nica:English Edition, 2011, 85(5):1173-1186.
[8] 贾承造, 陈汉林, 杨树锋, 等. 库车坳陷晚白垩世隆升过程及其地质响应[J]. 石油学报, 2003, 24(3):1-6. Jia Chengzao, Chen Hanlin, Yang Shufeng, et al. Late Cretaceous uplift-ing process and its geological response in Kuqa Depression[J]. Acta Petrolei Sinica, 2003, 24(3):1-6.
[9] 赵孟军, 张宝民. 库车前陆坳陷形成大气区的烃源岩条件[J]. 地质科学, 2002, 37(Z1):35-44. Zhao Mengjun, Zhang Baomin. Source rocks for a giant gas-accumulat-ing area in the Kuqa foreland depression[J]. Chinese Journal of Geolo-gy, 2002, 37(Z1):35-44.
[10] Soeder D, Chowdiah P. Pore geometry in high-and low-permeability sandstones, travis peak formation, East Texas[J]. SPE Formation Evalu-ation, 1990. 5(4):421-430.
[11] Shanley K W, Cluff R M, Robinson J W. Factors controlling prolific gas production from low-permeability sandstone reservoirs:Implica-tions for resource assessment, prospect development, and risk analysis[J]. AAPG Bulletin, 2004, 88(8):1083-1121.
[12] 范俊佳, 周海民, 柳少波. 塔里木盆地库车坳陷致密砂岩储层孔隙结构与天然气运移特征[J]. 中国科学院研究生院学报, 2014, 31(1):108-116. Fan Junjia, Zhou Haimin, Liu Shaobo. Pore structure and gas migra-tion characterization of tight sandstone in Kuqa depression of Tarim basin[J]. Journal of University of Chinese Academy of Sciences, 2014, 31(1):108-116.
[13] Wardlaw N C. The influence of wettability and critical pore-throat size ratio on snap-off[J]. Journal of Colloid and Interface Science, 1986, 109(2):461-472.
[14] Wardlaw N, Li Y, Forbes.D. Pore-throat size correlation from capillary pressure curves[J]. Transport in Porous Media, 1987, 2(6):597-614.
[15] Rezaee R, Saeedi A, Clennell.B. Tight gas sands permeability estima-tion from mercury injection capillary pressure and nuclear magnetic resonance data[J]. Journal of Petroleum Science and Engineering, 2012, (88-89):92-99.
[16] Pittman E D. Relationship of porosity and permeability to various pa-rameters derived from mercury Injection-capillary pressure curves for sandstone[J]. AAPG Bulletin, 1992, 76(2):191-198.
[17] Deng H, Leguizamon J, Aguilera.R. Petrophysics of triple-porosity tight gas reservoirs with a link to gas productivity[J]. SPE Reservoir Evaluation & Engineering, 2011, 14(5):566-577.
[18] Rawnsley K, Keijzer M D, Wei L, et al. Characterizing fracture and matrix heterogeneities in folded devonian carbonate thrust sheets, Wa-terton tight gas fields[J]. Western Canada. Geological Society, London, Special Publications, 2007, 270(1):265-279.