Reviews

Intelligent health system development strategy for the livelihood of technology

  • TAO Yong ,
  • SUN Lining ,
  • LIU Wenyong ,
  • WANG Tianmiao ,
  • KUANG Shaolong
Expand
  • 1. National Laboratory of Aerospace, Chinese Institute of Aeronautical Engineering Development Strategies, Beihang University, Beijing 100191, China;
    2. School of Mechanical and Electrical Engineering, Suzhou University, Suzhou 215006, China;
    3. School of Biological and Medical Engineering, Beihang University, Beijing 100191, China;
    4. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China

Received date: 2016-03-17

  Revised date: 2015-04-18

  Online published: 2016-06-13

Abstract

To focus on the aging society, people's livelihood, and urgent technological development demand for smart health systems, this paper introduces the connotation and characteristics of intelligent health systems. It also describes the basic scientific issues and key technologies, including health large data mining, personalization implant/print 3D printers, individualized accurate treatment, EMG fusion and HelpAge assistive robots. The international innovation frontier in the field and basic research on intelligent health systems are introduced as well. Domestic intelligent health system research and progress, as well as the advantages of individual Chinese institutions are presented. The paper provides a reference for the development of China intelligent health systems.

Cite this article

TAO Yong , SUN Lining , LIU Wenyong , WANG Tianmiao , KUANG Shaolong . Intelligent health system development strategy for the livelihood of technology[J]. Science & Technology Review, 2016 , 34(9) : 78 -85 . DOI: 10.3981/j.issn.1000-7857.2016.09.010

References

[1] 尚勇. 加快机器人科技和产业创新迎接即将到来的智能社会浪潮[N]. 科技日报, 2015-04-20. Shang Yong. To speed up the robot technology and industrial innovation and meet the coming wave of intelligent society[N]. Science and Technology Daily, 2015-04-20.
[2] 宋瑞岭. 生物机电一体化假肢手的仿真系统[D]. 上海:上海交通大学, 2008. Song Ruiling. Simulation for biomechatronic prosthetic hand[D]. Shanghai:Shanghai Jiao Tong University, 2008.
[3] Patel S, Park H, Bonato P, et al. A review of wearable sensors and systems with application in rehabilitation[J]. Journal of Neuroengineering & Rehabilitation, 2012, 9(12):1-17.
[4] Grayson A C R, Shawgo R S, Johnson A M, et al. A BioMEMS review:MEMS technology for physiologically integrated devices[J]. Proceedings of the IEEE, 2004, 92(1):6-21.
[5] Cao H, Leung V, Chow C, et al. Enabling technologies for wireless body area networks:A survey and outlook[J]. Communications Magazine, IEEE, 2009, 47(12):84-93.
[6] 郭洁. 华生恒业:国际领先的基因分析服务提供商[J]. 国际融资, 2014(7):24-25. Guo Jie. Todaysoft:Providing international leading genetic analysis service[J]. International Finance, 2014(7):24-25.
[7] Chan M, Estève D, Fourniols J Y, et al. Smart wearable systems:Current status and future challenges[J]. Artificial Intelligence in Medicine, 2012, 56(3):137-156.
[8] Mohammed S, Amirat Y, Rifai H. Lower-limb movement assistance through wearable robots:state of the Art and challenges[J]. Advanced Robotics, 2012, 26(1-2):1-22.
[9] 许红敬. 开启蓝海之旅有关可穿戴设备的机遇和赌注[J]. 消费电子, 2013(17):34-41. Xu Hongjing. Open the exploration of blue ocean:Opportunities and bet about wearable devices[J]. Consumer Electronics, 2013(17):34-41.
[10] 王树新, 刘玉亮, 李进华, 等. 腹腔微创手术机器人远程控制平台开发及实验[J]. 天津大学学报:自然科学与工程技术版, 2015(12):1041-1049. Wang Shuxin, Liu Yuliang, Li Jinhua, et al. Development and experiment of a tele-operated platform for minimally invasive laparoscopic surgery based on microhand robot[J]. Journal of Tianjin University:Science and Technology, 2015(12):1041-1049.
[11] 赵枝凯. 机器人辅助远程骨科手术时延控制研究[D]. 哈尔滨:哈尔滨工业大学, 2013. Zhao Zhikai. Research on time-delay control for robot-assisted remote orthopedic surgery[D]. Harbin:Harbin Institute of Technology, 2013.
[12] 王满宜, 王军强. 计算机辅助导航骨科手术及医用机器人技术在创伤骨科的应用[C]//2006年骨科新进展研讨会. 2006:1004-1009. Wang Manyi, Wang Junqiang. Medical robots and computer assisted navigation used in surgery of orthopaedic trauma[C]//New progress in orthopaedic seminar in 2006. 2006:1004-1009.
[13] 宋爱国. 力觉临场感遥操作机器人(1):技术发展与现状[J]. 南京信息工程大学学报:自然科学版, 2013, 5(1):1-19. Song Aiguo. Force telepresence telerobot(1):Review of the history and development[J]. Journal of Nanjing University of Information Science and Technology:Natural Science Edition, 2013, 5(1):1-19.
[14] 徐兆红, 宋成利, 吴文武. 微创外科机器人力反馈跟踪控制[J]. 生物医学工程学杂志, 2012, 29(3):407-410. Xu Zhaohong, Song Chenli, Wu Wenwu. Haptic tracking control for minimally invasive robotic surgery[J]. Journal of Biomedical Engineering, 2012, 29(3):407-410.
[15] 徐武夷, 杨文, 卢旺盛. 机器人远程手术研究状况与展望[J]. 转化医学杂志, 2015(2):94-96. Xu Wuyi, Yang Wen, Lu Wangsheng. Status and prospect of research on robot remote operation[J]. Translational Medicine Journal, 2015(2):94-96.
[16] 高宝丰, 郭书祥. 现代医工学机器人技术在介入医疗及康复系统的应用研究[C]//第三届机器人产业链创新与发展及科技成果产业化推进科技论坛. 2014. Gao Baofeng, Guo Shuxiang. Robot technology of modern medical professionals in health care and rehabilitation system of applied research[C]//The Third Robot Industry Chain Innovation and Development and Industrialization of Scientific and Technological Achievements to Promote Science And Technology Forum. 2014.
[17] 邢凯, 赵新华, 陈炜, 等. 外骨骼机器人的研究现状及发展趋势[J]. 医疗卫生装备, 2015, 36(1):104-107. Xing Kai, Zhao Xinhua, Chen Wei, et al. Research situation and development trend of robot exoskeleton[J]. Chinese Medical Equipment Journal, 2015, 36(1):104-107.
[18] 龙亿, 杜志江, 王伟东. 基于人体运动意图卡尔曼预测的外骨骼机器人控制及实验[J]. 机器人, 2015, 37(3):304-309. Long Yi, Du Zhijiang, Wang Weidong. Control and experiment for exoskeleton robot based on kalman prediction of human motion intent[J]. Robot, 2015, 37(3):304-309.
[19] 陈伟海, 徐颖俊, 王建华, 等. 并联式下肢康复外骨骼运动学及工作空间分析[J]. 机械工程学报, 2015, 51(13):158-166. Chen Weihai, Xu Yingjun, Wang Jianhua, et al. Kinematics and workspace analysis of parallel lower limb rehabilitation exoskeleton[J]. Journal of Mechanical Engineering, 2015, 51(13):158-166.
Outlines

/