Special Issues

Research progress of mode division multiplexing communication technology

  • HU Guijun ,
  • YAN Li ,
  • CHANG Yuxin ,
  • HAN Yueyu
Expand
  • College of Communication Engineerings, Jilin University, Changchun 130012, China

Received date: 2016-06-30

  Revised date: 2016-07-21

  Online published: 2016-09-21

Abstract

Mode division multiplexing(MDM)is becoming a hot topic in the field of optical fiber communication. It can increase the capacity of optical fiber communication exponentially by using the limited and orthogonal spatial modes of few-mode fiber to transmit information in parallel. In this paper, we present a thorough review of recent progress in MDM in terms of system modeling, equalization, and development of system experiment. Firstly, we give a detailed description of the equalization method used for demultiplexing and analyze its computational complexity. Then, we summarize some recent experimental demonstrations of MDM, including the particular structure of the system and main results. Finally, we give some possible research directions for MDM.

Cite this article

HU Guijun , YAN Li , CHANG Yuxin , HAN Yueyu . Research progress of mode division multiplexing communication technology[J]. Science & Technology Review, 2016 , 34(16) : 54 -61 . DOI: 10.3981/j.issn.1000-7857.2016.16.005

References

[1] Xia C, Velázquez-Benítez A M, Lopez J E A, et al. TDMA few-mode passive optical network[C]//Asia Communications and Photonics Confer-ence. Shanghai:OSA, 2014:ATh2F. 2.
[2] Gnauck A H, Tkach R W, Chraplyvy A R, et al. High-capacity optical transmission systems[J]. Journal of Lightwave Technology, 2008, 26(9):1032-1045.
[3] Zhu B, Liu X, Chandrasekhar S, et al. 112-Tb/s (7×160×107 Gb/s) space-division multiplexed DWDM transmission over a 76.8 km multi-core fiber[C]//European Conference and Exposition on Optical Communi-cations. Geneva, Switzerland:OSA, 2011:Tu.5.B.5.
[4] Bosco G, Carena A, Curri V, et al. Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems[J]. IEEE Pho-tonics Technology Letters, 2010, 22(15):1129-1131.
[5] Qian D, Huang M F, Ip E, et al. 101.7 Tb/s (370×294 Gb/s) PDM-128QAM-OFDM transmission over 3×55 km SSMF using pilot-based phase noise mitigation[C]//Optical Fiber Communication Conference. Los Angeles:OSA, 2011:PDPB5.
[6] Kikuchi K. Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation[J]. IEEE Selected Top-ics in Quantum Electronics, 2006, 12(4):563-570.
[7] Zhou X, Yu J. Advanced coherent modulation formats and algorithms:Higher-order multi-level coding for high-capacity system based on 100 Gbps channel[C]//Optical Fiber Communication Conference. Califor-nia:OSA, 2010:OMJ3.
[8] Essiambre R J, Kramer G, Winzer P J, et al. Capacity limits of optical fiber networks[J]. Journal of Lightwave Technology, 2010, 28(4):662-701.
[9] Tkach R W. Scaling optical communications for the next decade and be-yond[J]. Bell Labs Technical Journal, 2010, 14(4):3-9.
[10] Essiambre R J, Tkach R W. Capacity trends and limits of optical com-munication networks[J]. Proceedings of the IEEE, 2012, 100(5):1035-1055.
[11] Yan L S, Liu X, Shieh W. Toward the Shannon limit of spectral effi-ciency[J]. IEEE Photonics Journal, 2011, 3(2):325-330.
[12] Ip E, Ji P, Mateo E, et al. 100 G and beyond transmission technolo-gies for evolving optical networks and relevant physical-layer issues[J]. Proceedings of the IEEE, 2012, 100(5):1065-1078.
[13] 韩佳巍. 大容量模分复用光传输系统的若干关键技术研究[D]. 北京:北京邮电大学,2013. Han Jiawei. Research of the key technologies for large-capacity modedivision multiplexed optical transmission systems[D]. Beijing:Beijing University of Posts and Telecommunications, 2013.
[14] Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibers[J]. Nature Photonics, 2013, 7(5):354-362.
[15] Winzer P J. Making spatial multiplexing a reality[J]. Nature Photonics, 2014, 8(5):345-348.
[16] Li G F, Bai N, Zhao N B, et al. Space-division multiplexing:the next frontier in optical communication[J]. Advances in Optics and Photon-ics, 2014, 6(4):413-487.
[17] Pepeljugoski P, Hackert M J, Abbott J S, et al. Development of system specification for laser-optimized 50μm multimode fiber for multigiga-bit short-wavelength LANs[J]. Journal of Lightwave Technology, 2003, 21(5):1256.
[18] 姚殊畅, 付松年, 张敏明, 等. 基于少模光纤的模分复用系统多输入多输出均衡与解调[J]. 物理学报, 2013, 62(14):144215. Yao Shuchang, Fu Songnian, Zhang Minming, et al. Demodulation and multi-input multi-output equalization for mode division multiplexing system using a novel few-mode fiber[J]. Acta Physica Sinica. 2013, 62(14):144215.
[19] Hu T, Li J, Zhu P, et al. Experimental demonstration of passive opti-cal network based on mode-division-multiplexing[C]//Optical Fiber Communication Conference. Los Angeles, CA:IEEE, 2015:Th2A.63.
[20] Sleiffer V, Leoni P, Jung Y, et al. 20×960 Gb/s Space-division-multi-plexed 32QAM transmission over 60 km few-mode fiber[J]. Optics Ex-press, 2014, 22(1):749-755.
[21] Li J H, Hu G J, Yan L, et al. De-multiplexing based on complex ICA for mode group diversity multiplexing system[J]. Optical and Quantum Electronics, 2015, 47(2):217-224.
[22] Ho K P, Kahn J M. Optical fiber telecommunications[M]. 6th ed. Am-sterdam:Elsevier, 2013:492-568.
[23] Randel S, Ryf R, Sierra A, et al. 6×56 Gb/s mode-division multi-plexed transmission over 33 km few-mode fiber enabled by 6×6 MI-MO equalization[J]. Optics Express, 2011, 19(17):16697-16707.
[24] Bai N, Ip E, Huang Y K, et al. Mode-division multiplexed transmis-sion with inline few-mode fiber amplifier[J]. Optics Express, 2012, 20(3):2668-2680.
[25] Ryf R, Randel S, Gnauck A H, et al. Mode-division multiplexing Over 96 km of few-mode fiber using coherent 6×6 MIMO processing[J]. Journal of Lightwave Technolgy, 2012, 30(4):521-531.
[26] Bai N, Li G F. Adaptive frequency-domain equalization for mode-divi-sion multiplexed transmission[J]. IEEE Photonics Technology Letters, 2012, 24(21):1918-1921.
[27] Arik S Ö, Askarov D, Kahn J M. Adaptive frequency-domain equaliza-tion in mode-division multiplexing systems[J]. Journal of Lightwave Technology, 2014, 32(10):1841-1852.
[28] Zhao L, Hu G J, Yan L, et al. Mode demultiplexing based on frequen-cy-domain independent component analysis[J]. IEEE Photonics Tech-nology Letters, 2015, 27(2):185-188.
[29] 胡贵军, 王艳萍, 闫李, 等. 差分群时延条件下基于恒模算法的模式解复用技术[J]. 吉林大学学报(工学版), 2015(3):961-965. Hu Guijun, Wang Yanping, Yan Li, et al. Mode demultiplexing based on CMA under the condition of differential group delay[J]. Journal of Jilin University (Engineering and Technology Edition), 2015(3):961-965.
[30] Chang Y X, Hu G J, Yan L, et al. Mode demultiplexing based on mul-timodulus blind equalization algorithm[J]. Optics Communications, 2014, 324(1):311-317.
[31] Wang B R, Hu G J. Demultiplexing based on frequency-domin multi-modulus blind equalization for mode division multiplexing system[J]. Optical and Quantum Electronics. (accepted)
[32] Koebele C, Salsi M, Milord L, et al. 40 km transmission of five mode division multiplexed data streams at 100 Gb/s with low MIMO-DSP complexity[C]//European Conference and Exposition on Optical Com-munications. Geneva, Switzerland:OSA, 2011:Th.13.C.3.
[33] Winzer P J, Ryf R, Randel S. Optical Fiber Telecommunications[M]. 6th ed. Amsterdam:Elsevier, 2013:433-490.
[34] Haykin S. Adaptive filter theory[M]. Englewood Cliffs, NJ:Prentice-Hall, 2001.
[35] Faruk M S, Kikuchi K. Adaptive frequency-domain equalization in digital coherent optical receivers[J]. Optics Express, 2011, 19(13):12789-12798.
[36] Hyvärinen A, Karhunen J, Oja E. 独立成分分析[M]. 周宗潭, 董国华, 徐昕, 等译. 北京:电子工业出版社, 2007. Hyvärinen A, Karhunen J, Oja E. Independent component analysis[M]. Zhou Zongtan, Dong Guohua, Xu Xin, et al, trans. Beijing:Publishing House of Electronics Industry, 2007.
[37] Fontaine N K, Ryf R, Chen H S, et al. 30×30 MIMO transmission over 15 Spatial Modes[C]//Optical Fiber Communication Conference. Los Angeles, California:OSA, 2015:Th5C.1.
[38] Ferreira F M, Fonseca D, Silva H J A. Design of few-mode fiber with M-modes and low differential mode delay[J]. Journal of Lightwave Technology, 2014, 32(3):353-360.
[39] Kuschnerov M, Chouayakh M, Piyawanno K, et al. Data-aided versus blind single-carrier coherent receivers[J]. IEEE Photonics Journal, 2010, 2(3):387-403.
[40] Wakayama Yuta, Okamoto Atsushi, Kawabata Kento, et al. Mode de-multiplexer using angularly multiplexed volume holograms[J]. Optics Express, 2013, 21(10):12920-33.
[41] Von Hoyningen-Huene J, Ryf R, Winzer P. LCoS-based mode shaper for few-mode fiber[J]. Optics Express, 2013, 21(15):18097-18110.
[42] Hanzawa N, Saitoh K, Sakamoto T, et al. Demonstration of mode-divi-sion multiplexing transmission over 10 km two-mode fiber with mode coupler[C]//Optical Fiber Communication Conference. Los Angeles, California:OSA, 2011:1-3.
[43] Chang S H, Chung H S, Ryf R, et al. Mode-and wavelength-division multiplexed transmission using all-fiber mode multiplexer based on mode selective couplers[J]. Optics Express, 2015, 23(6):7164-7172.
[44] Hanzawa N, Saitoh K, Sakamoto T, et al. Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission[J]. Optics Express, 2013, 21(22):25752-25760.
[45] Sleiffer V, Jung Y, Veljanovski V, et al. 73.7 Tb/s (96×3×256 Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA[J]. Optics Express, 2012, 20(26):428-438.
[46] Ip E, Li M J, Bennett K, et al. 146λ×6×19 Gbaud wavelength-and mode-division multiplexed transmission over 10×50-km spans of fewmode fiber with a gain-equalized few-mode EDFA[J]. Journal of Light-wave Technology, 2014, 32(4):790-797.
[47] Koji I, Daiki S, Takehiro T, et al. Performance evaluation of selective mode conversion based on phase plates for a 10-mode fiber[J]. Optics Express, 2014, 22(17):20881-20893.
[48] Genevaux P, Simonneau C, Labroille G, et al. 6-mode spatial multi-plexer with low loss and high selectivity for transmission over few mode fiber[C]//Optical Fiber Communication Conference. Los Angeles, California:OSA, 2015:W1A. 5.
[49] Igarashi K, Souma D, Wakayama Y, et al. 114 space-division-multi-plexed transmission over 9.8 km weakly-coupled-6-mode uncoupled-19-core fibers[C]//Optical Fiber Communication Conference. Califor-nia:OSA, 2015:Th5C. 4.
[50] Ryf R, Fontaine N K, Montoliu M, et al. Photonic-lantern-based mode multiplexers for few-mode-fiber transmission[C]//Optical Fiber Communications Conference and Exhibition. San Francisco, California:IEEE, 2014:1-3.
[51] Leon-Saval S G, Fontaine N K, Salazar-Gil J R, et al. Mode-selective photonic lanterns for space division multiplexing[J]. Optics Express, 2014, 22(1):1036-1044.
[52] Yan L, Hu G J, Xiao J, et al. Characteristic analysis of two-mode fi-ber Bragg grating[J]. Applied Physics B, 2014, 117(4):1221-1228.
[53] Hu G J, Han Y Y, Xiao J, et al. Experimental demonstration of LP11 mode filtering based on two-mode fiber Bragg grating[J]. Optical and Quantum Electronics, 2015, 47(7):1973-1982.
[54] 胡贵军,常玉鑫,韩悦羽, 等. 基于少模光纤布拉格光栅的模分复用系统实验研究[J]. 电子学报,(已接收). Hu Guijun, Chang Yuxin, Han Yueyu, et al. Experimental research of mode division multiplexing system based on few-mode FBG[J]. Acta Electronica Sinica, (accepted).
[55] Han Y Y, Hu G J. A novel MUX/DEMUX based on few-mode FBG for mode division multiplexing system[J]. Optics Communications, 2016, 367:161-166.
Outlines

/