[1] Xia C, Velázquez-Benítez A M, Lopez J E A, et al. TDMA few-mode passive optical network[C]//Asia Communications and Photonics Confer-ence. Shanghai:OSA, 2014:ATh2F. 2.
[2] Gnauck A H, Tkach R W, Chraplyvy A R, et al. High-capacity optical transmission systems[J]. Journal of Lightwave Technology, 2008, 26(9):1032-1045.
[3] Zhu B, Liu X, Chandrasekhar S, et al. 112-Tb/s (7×160×107 Gb/s) space-division multiplexed DWDM transmission over a 76.8 km multi-core fiber[C]//European Conference and Exposition on Optical Communi-cations. Geneva, Switzerland:OSA, 2011:Tu.5.B.5.
[4] Bosco G, Carena A, Curri V, et al. Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems[J]. IEEE Pho-tonics Technology Letters, 2010, 22(15):1129-1131.
[5] Qian D, Huang M F, Ip E, et al. 101.7 Tb/s (370×294 Gb/s) PDM-128QAM-OFDM transmission over 3×55 km SSMF using pilot-based phase noise mitigation[C]//Optical Fiber Communication Conference. Los Angeles:OSA, 2011:PDPB5.
[6] Kikuchi K. Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation[J]. IEEE Selected Top-ics in Quantum Electronics, 2006, 12(4):563-570.
[7] Zhou X, Yu J. Advanced coherent modulation formats and algorithms:Higher-order multi-level coding for high-capacity system based on 100 Gbps channel[C]//Optical Fiber Communication Conference. Califor-nia:OSA, 2010:OMJ3.
[8] Essiambre R J, Kramer G, Winzer P J, et al. Capacity limits of optical fiber networks[J]. Journal of Lightwave Technology, 2010, 28(4):662-701.
[9] Tkach R W. Scaling optical communications for the next decade and be-yond[J]. Bell Labs Technical Journal, 2010, 14(4):3-9.
[10] Essiambre R J, Tkach R W. Capacity trends and limits of optical com-munication networks[J]. Proceedings of the IEEE, 2012, 100(5):1035-1055.
[11] Yan L S, Liu X, Shieh W. Toward the Shannon limit of spectral effi-ciency[J]. IEEE Photonics Journal, 2011, 3(2):325-330.
[12] Ip E, Ji P, Mateo E, et al. 100 G and beyond transmission technolo-gies for evolving optical networks and relevant physical-layer issues[J]. Proceedings of the IEEE, 2012, 100(5):1065-1078.
[13] 韩佳巍. 大容量模分复用光传输系统的若干关键技术研究[D]. 北京:北京邮电大学,2013. Han Jiawei. Research of the key technologies for large-capacity modedivision multiplexed optical transmission systems[D]. Beijing:Beijing University of Posts and Telecommunications, 2013.
[14] Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibers[J]. Nature Photonics, 2013, 7(5):354-362.
[15] Winzer P J. Making spatial multiplexing a reality[J]. Nature Photonics, 2014, 8(5):345-348.
[16] Li G F, Bai N, Zhao N B, et al. Space-division multiplexing:the next frontier in optical communication[J]. Advances in Optics and Photon-ics, 2014, 6(4):413-487.
[17] Pepeljugoski P, Hackert M J, Abbott J S, et al. Development of system specification for laser-optimized 50μm multimode fiber for multigiga-bit short-wavelength LANs[J]. Journal of Lightwave Technology, 2003, 21(5):1256.
[18] 姚殊畅, 付松年, 张敏明, 等. 基于少模光纤的模分复用系统多输入多输出均衡与解调[J]. 物理学报, 2013, 62(14):144215. Yao Shuchang, Fu Songnian, Zhang Minming, et al. Demodulation and multi-input multi-output equalization for mode division multiplexing system using a novel few-mode fiber[J]. Acta Physica Sinica. 2013, 62(14):144215.
[19] Hu T, Li J, Zhu P, et al. Experimental demonstration of passive opti-cal network based on mode-division-multiplexing[C]//Optical Fiber Communication Conference. Los Angeles, CA:IEEE, 2015:Th2A.63.
[20] Sleiffer V, Leoni P, Jung Y, et al. 20×960 Gb/s Space-division-multi-plexed 32QAM transmission over 60 km few-mode fiber[J]. Optics Ex-press, 2014, 22(1):749-755.
[21] Li J H, Hu G J, Yan L, et al. De-multiplexing based on complex ICA for mode group diversity multiplexing system[J]. Optical and Quantum Electronics, 2015, 47(2):217-224.
[22] Ho K P, Kahn J M. Optical fiber telecommunications[M]. 6th ed. Am-sterdam:Elsevier, 2013:492-568.
[23] Randel S, Ryf R, Sierra A, et al. 6×56 Gb/s mode-division multi-plexed transmission over 33 km few-mode fiber enabled by 6×6 MI-MO equalization[J]. Optics Express, 2011, 19(17):16697-16707.
[24] Bai N, Ip E, Huang Y K, et al. Mode-division multiplexed transmis-sion with inline few-mode fiber amplifier[J]. Optics Express, 2012, 20(3):2668-2680.
[25] Ryf R, Randel S, Gnauck A H, et al. Mode-division multiplexing Over 96 km of few-mode fiber using coherent 6×6 MIMO processing[J]. Journal of Lightwave Technolgy, 2012, 30(4):521-531.
[26] Bai N, Li G F. Adaptive frequency-domain equalization for mode-divi-sion multiplexed transmission[J]. IEEE Photonics Technology Letters, 2012, 24(21):1918-1921.
[27] Arik S Ö, Askarov D, Kahn J M. Adaptive frequency-domain equaliza-tion in mode-division multiplexing systems[J]. Journal of Lightwave Technology, 2014, 32(10):1841-1852.
[28] Zhao L, Hu G J, Yan L, et al. Mode demultiplexing based on frequen-cy-domain independent component analysis[J]. IEEE Photonics Tech-nology Letters, 2015, 27(2):185-188.
[29] 胡贵军, 王艳萍, 闫李, 等. 差分群时延条件下基于恒模算法的模式解复用技术[J]. 吉林大学学报(工学版), 2015(3):961-965. Hu Guijun, Wang Yanping, Yan Li, et al. Mode demultiplexing based on CMA under the condition of differential group delay[J]. Journal of Jilin University (Engineering and Technology Edition), 2015(3):961-965.
[30] Chang Y X, Hu G J, Yan L, et al. Mode demultiplexing based on mul-timodulus blind equalization algorithm[J]. Optics Communications, 2014, 324(1):311-317.
[31] Wang B R, Hu G J. Demultiplexing based on frequency-domin multi-modulus blind equalization for mode division multiplexing system[J]. Optical and Quantum Electronics. (accepted)
[32] Koebele C, Salsi M, Milord L, et al. 40 km transmission of five mode division multiplexed data streams at 100 Gb/s with low MIMO-DSP complexity[C]//European Conference and Exposition on Optical Com-munications. Geneva, Switzerland:OSA, 2011:Th.13.C.3.
[33] Winzer P J, Ryf R, Randel S. Optical Fiber Telecommunications[M]. 6th ed. Amsterdam:Elsevier, 2013:433-490.
[34] Haykin S. Adaptive filter theory[M]. Englewood Cliffs, NJ:Prentice-Hall, 2001.
[35] Faruk M S, Kikuchi K. Adaptive frequency-domain equalization in digital coherent optical receivers[J]. Optics Express, 2011, 19(13):12789-12798.
[36] Hyvärinen A, Karhunen J, Oja E. 独立成分分析[M]. 周宗潭, 董国华, 徐昕, 等译. 北京:电子工业出版社, 2007. Hyvärinen A, Karhunen J, Oja E. Independent component analysis[M]. Zhou Zongtan, Dong Guohua, Xu Xin, et al, trans. Beijing:Publishing House of Electronics Industry, 2007.
[37] Fontaine N K, Ryf R, Chen H S, et al. 30×30 MIMO transmission over 15 Spatial Modes[C]//Optical Fiber Communication Conference. Los Angeles, California:OSA, 2015:Th5C.1.
[38] Ferreira F M, Fonseca D, Silva H J A. Design of few-mode fiber with M-modes and low differential mode delay[J]. Journal of Lightwave Technology, 2014, 32(3):353-360.
[39] Kuschnerov M, Chouayakh M, Piyawanno K, et al. Data-aided versus blind single-carrier coherent receivers[J]. IEEE Photonics Journal, 2010, 2(3):387-403.
[40] Wakayama Yuta, Okamoto Atsushi, Kawabata Kento, et al. Mode de-multiplexer using angularly multiplexed volume holograms[J]. Optics Express, 2013, 21(10):12920-33.
[41] Von Hoyningen-Huene J, Ryf R, Winzer P. LCoS-based mode shaper for few-mode fiber[J]. Optics Express, 2013, 21(15):18097-18110.
[42] Hanzawa N, Saitoh K, Sakamoto T, et al. Demonstration of mode-divi-sion multiplexing transmission over 10 km two-mode fiber with mode coupler[C]//Optical Fiber Communication Conference. Los Angeles, California:OSA, 2011:1-3.
[43] Chang S H, Chung H S, Ryf R, et al. Mode-and wavelength-division multiplexed transmission using all-fiber mode multiplexer based on mode selective couplers[J]. Optics Express, 2015, 23(6):7164-7172.
[44] Hanzawa N, Saitoh K, Sakamoto T, et al. Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission[J]. Optics Express, 2013, 21(22):25752-25760.
[45] Sleiffer V, Jung Y, Veljanovski V, et al. 73.7 Tb/s (96×3×256 Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA[J]. Optics Express, 2012, 20(26):428-438.
[46] Ip E, Li M J, Bennett K, et al. 146λ×6×19 Gbaud wavelength-and mode-division multiplexed transmission over 10×50-km spans of fewmode fiber with a gain-equalized few-mode EDFA[J]. Journal of Light-wave Technology, 2014, 32(4):790-797.
[47] Koji I, Daiki S, Takehiro T, et al. Performance evaluation of selective mode conversion based on phase plates for a 10-mode fiber[J]. Optics Express, 2014, 22(17):20881-20893.
[48] Genevaux P, Simonneau C, Labroille G, et al. 6-mode spatial multi-plexer with low loss and high selectivity for transmission over few mode fiber[C]//Optical Fiber Communication Conference. Los Angeles, California:OSA, 2015:W1A. 5.
[49] Igarashi K, Souma D, Wakayama Y, et al. 114 space-division-multi-plexed transmission over 9.8 km weakly-coupled-6-mode uncoupled-19-core fibers[C]//Optical Fiber Communication Conference. Califor-nia:OSA, 2015:Th5C. 4.
[50] Ryf R, Fontaine N K, Montoliu M, et al. Photonic-lantern-based mode multiplexers for few-mode-fiber transmission[C]//Optical Fiber Communications Conference and Exhibition. San Francisco, California:IEEE, 2014:1-3.
[51] Leon-Saval S G, Fontaine N K, Salazar-Gil J R, et al. Mode-selective photonic lanterns for space division multiplexing[J]. Optics Express, 2014, 22(1):1036-1044.
[52] Yan L, Hu G J, Xiao J, et al. Characteristic analysis of two-mode fi-ber Bragg grating[J]. Applied Physics B, 2014, 117(4):1221-1228.
[53] Hu G J, Han Y Y, Xiao J, et al. Experimental demonstration of LP11 mode filtering based on two-mode fiber Bragg grating[J]. Optical and Quantum Electronics, 2015, 47(7):1973-1982.
[54] 胡贵军,常玉鑫,韩悦羽, 等. 基于少模光纤布拉格光栅的模分复用系统实验研究[J]. 电子学报,(已接收). Hu Guijun, Chang Yuxin, Han Yueyu, et al. Experimental research of mode division multiplexing system based on few-mode FBG[J]. Acta Electronica Sinica, (accepted).
[55] Han Y Y, Hu G J. A novel MUX/DEMUX based on few-mode FBG for mode division multiplexing system[J]. Optics Communications, 2016, 367:161-166.