Special Issues

All optical digital signal processing for modern ultra high bit-rate optical communications

  • WANG Zhi
Expand
  • School of Science, Beijing Jiaotong University, Beijing 100044, China

Received date: 2016-06-30

  Revised date: 2016-07-20

  Online published: 2016-09-21

Abstract

A demo system at 105.1 Tbit/s over 14350 km was reported in the OFC'2016, and ultra high bit rate transmission and all optical switch have been the most keypoint of the optical fiber telecommunications and all optical networking. High speed optical signal processing, including all optical logic gates, wavelength convertor, all optical buffer, optical computations, etc., are employed at the switching node in the all optical network. In this article, some technologies about the high speed all optical digital signal processing for high speed optical fiber systems are presented with our related research works.

Cite this article

WANG Zhi . All optical digital signal processing for modern ultra high bit-rate optical communications[J]. Science & Technology Review, 2016 , 34(16) : 121 -138 . DOI: 10.3981/j.issn.1000-7857.2016.16.016

References

[1] Turukhin A, SinkinO V, Batshon H, et al. 105.1 Tb/s power-efficient transmission over 14350 km using a 12-Core Fiber[C]//2016Optical Fiber Communication Conference. Anaheim:Optical Society of America, 2016:Th4C.1.
[2] Caenegem Ruth Van, Martínez José M, ColleDidier, et al. From IP over WDM to all-optical packet switching:economical view[J]. Journalof Lightwave Technology, 2006, 24(4):1638-1645.
[3] Russell P. Photonic crystal fibers[J]. Science, 2003, 299(5605):358-362.
[4] Knight J C, Russell P S J. New ways to guide light[J]. Science, 2002, 296(5566):276-277.
[5] Zhou G, Xu K, Wu J, et al. Self-pumping wavelength conversion for DPSK signals and DQPSK generation through four-wave mixing in high-ly nonlinear optical fiber[J]. IEEE Photonics Technology Letter, 2006, 18(22):2389-2391.
[6] Nielsen M L, Mørk J. Recent advancements in semiconductor-based op-tical signal processing[C]//32nd European Conference on Optical Com-munications. Cannes, France:Institution of Engineering and Technolo-gy, 2006:We2.4.1
[7] Poustie A. Semiconductor devices for all-optical signal processing[C]//31st European Conference on Optical Communications. Glasgow, UK:Institution of Engineering and Technology, 2005:475-478.
[8] 徐竞. 高速全光逻辑运算及其应用的理论和实验研究[D]. 武汉:华中科技大学光学与电子信息学院, 2009. Xu Jing. Theoretical and experimental research on high speed all-optical logic operation and application[D]. Wuhan:School of optical and electronic information, Huazhong University of Science and Technology, 2009.
[9] Jae Hun Kim,Young Min Jhon,Young Tae Byun, et al. All-optical XOR gate using semiconductor optical amplifiers without additional input beam[J]. IEEE Photonics Technology Letters, 2002, 14(10):1436-1438.
[10] Zhang M, Wang L, Ye P. All-optical XOR logic gates:Technologies and experiment demonstrations[J]. IEEE Optical Communications, 2005, 43(5):S19-S24.
[11] Fjelde T, Wolfson D, Kloch A, et al. Demonstration of 20 Gbit/s alloptical logic XOR in integrated SOA-based interferometric wavelength converter[J]. Electronics Letters, 2000, 36(22):1863-1864.
[12] Fjelde T, Kloch A, Wolfson D, et al. Novel scheme for simple labelswapping employing XOR logic in an integrated interferometric wave-length converter[J]. IEEE Photonics Technology Letters, 2001, 13(7):750-752.
[13] 叶俊卿. 基于半导体光放大器的全光逻辑门[D]. 武汉:华中科技大学光学与电子信息学院, 2006. Ye Junqing. All-optical logic gates based on semiconductor optical amplifiers[D]. Wuhan:School of optical and electronic information, Huazhong University of Science and Technology, 2006.
[14] 孙军强, 张新亮, 陈娟, 等. 基于半导体光放大器交叉增益饱和的波长转换的理论分析[J]. 中国激光, 1999, 26(6):524-528. Sun Junqiang, Zhang Xinliang, Chen Juan, et al. Theoretical analysis of wavelength conversion based on cross gain saturation of semiconduc-tor optical amplifier[J]. Chinese Journalof Lasers, 1999, 26(6):524-528.
[15] 董建绩, 张新亮, 黄德修. 基于半导体光放大器四波混频效应的多种调制格式的波长转换实验[J]. 光学学报, 2008, 28(7):1327-1332. Dong Jianji, Zhang Xinliang, Huang Dexiu. Experimental study of wavelength conversion at various modulation formats based on fourwave mixing in a semiconductor optical amplifier[J]. Acta Optica Sini-ca, 2008, 28(7):1327-1332.
[16] 吴重庆. 光通信导论[M]. 北京:清华大学出版社, 2008. Wu Chongqing. Introduction on optical communication[M]. Beijing:Ts-inghua University Press, 2008.
[17] Danielsen, Lykke Søren. Traffic analysis and signal processing in high-capacity optical networks[M]. Copenhagen:Technical university of Denmark, 1997.
[18] Idler W, Schilling M, Daub K, et al. Signal quality and BER perfor-mance improvement by wavelength conversion with an integrated three-port Mach-Zehnder interferometer[J]. Electronics Letters, 1995, 31(6):454-455.
[19] Eiselt M, Pieper W, Weber H G. SLALOM:Semiconductor laser ampli-fier in a loop mirror[J]. IEEE Journal of Lightwave Technology, 1995, 13(10):2099-2112.
[20] Sun Zhenchao, Wang Zhi, Wu Chongqing, et al. All-optical pseudoran-dom bit sequences generator based on TOADs[J]. Optical Fiber Tech-nology, 2016, 28:42-47.
[21] Sun Zhenchao, Wang Zhi, Wu Chongqing, et al. All-optical repetition rate multiplication of pseudorandom bit sequences by employing pow-er coupler and equalizer[J]. Optical Engineering, 2015, 54(10):106111-106111.
[22] Sun Zhenchao, Wang Zhi, Wu Chongqing, et al. All-Optical repetition rate multiplication of pseudorandom bit sequences based on cascaded TOADs[J]. Optics Communications, 2016, 363:1-6.
[23] 吴重庆, 袁宝忠. 光速减慢和光缓存技术[J]. 物理, 2005, 34(12):922-926. Wu Chongqing, Yuan Baozhong. Speed slow down of light and optical buffer technology[J]. Physics, 2005, 34(12):922-926.
[24] 王亚平. 光分组交换中全光路由控制的若干关键技术研究[D]. 北京:北京交通大学物理系, 2010:5-6. Wang Yaping. Research on the key technologies for all-optical routing in OPS[D]. Beijing:Deparment of Physics, Beijing Jiaotong University. 2010, 5-6.
[25] 冯震. 基于光缓存器的全光时分交换技术研究[D]. 北京:北京交通大学物理系, 2013:35-40. Feng Z. Study on all optical time division switching technology based on optical buffers[D]. Beijing:Deparment of Physics, Beijing Jiaotong University, 2013:35-40.
[26] Danielsen S L, Mikkelsen B, Joergensen C, et al. 10 Gbit/s operation of a multiwavelength buffer architecture employing a monolithically integrated all-optical interferometric Michelson wavelength converter[J]. Photonics Technology Letters, 1996, 8(3):434-436.
[27] Liu A M, Wu C Q, Lim M S, et al. Optical buffer configuration based on 3×3 collinear fiber coupler[J]. Electronics Letters, 2004, 40(16):1017-1019.
[28] 李亚捷, 吴重庆, 付松年. 基于3×3平行排列耦合器的全光光开关的特性分析[J]. 光学技术, 2006, 32(3):400-402. Li Yajie, Wu Chongqing, Fu Songnian. Characteristic analysis of an novel all-optical switch based on 3×3 collinear fiber coupler[J]. Opti-cal Technique, 2006, 32(3):400-402.
[29] Fu Songnian, Shum P, Zhang Liren, et al. Design of SOA-based dualloop optical buffer with a 3×3 collinear coupler:Guideline and opti-mizations[J]. Journal of Lightwave Technology, 2006, 24(7):2768-2778.
[30] Tian Changyong, Wu Chongqing, Li Zhengyong, et al, Dual-wave-length packets buffering in dual-loop optical buffer[J]. IEEE Photon-ics Technology Letters, 2008, 20(8):578-580.
[31] Cheng Mu, Wu Chongqing, Song Chao, et al. The cascadable recircu-lating buffer based on nonlinear polarization rotation in a semiconduc-tor optical amplifier[C]//Asia-Pacific Optical Communications 2008. Hangzhou, China:International Society for Optics and Photonics, 2008:71340U.
[32] Boyd R W. Slow and fast light:Fundamentals and applications[J]. Jour-nal of Modern Optics, 2009, 56(18/19):1908-1915.
[33] Zhao Yong, Zhao Huawei, Zhang Xinyuan, et al. New mechanisms of slow light and their applications[J]. Optics & Laser Technology. 2009, 41(5):517-525.
[34] Zadok Avi, Eyal Avishay, Tur Moshe. Stimulated Brillouin scattering slow light in optical fibers[J]. Applied Optics, 2011, 50(25):E38-E49.
[35] Patnaik A K, Liang J Q, Hakuta K. Slow light propagation in a thin op-tical fiber via electromagnetically induced transparency[J]. Physical Review A, 2002, 66(6):063808.
[36] A Schweinsberg. Studied of slow light with applications in optical beam steering[D]. Rochester:Univeristy of Rochester, 2012:22-28.
[37] Bigelow M S, Lepeshkin N N, Boyd R W. Superluminal and slow light propagation in a room-temperature solid[J]. Science, 2003, 301(5630):200-203.
[38] Schwarz S E, Tan T Y. Wave interaction in saturable absorbers[J]. Ap-plied Physics Letters, 1967, 10(1):4-7.
[39] Hillman L W, Boyd R W, Krasinski J, et al. Observation of a spectral hole due to population oscillations in a homogeneously broadened opti-cal absorption line[J]. Optics Communications, 1983, 45(6):416-419.
[40] Bigelow M S, Lepeshkin N N, Boyd R W. Observation of ultraslow light propagation in a ruby crystal at room temperature[J]. Physical Re-view Letters. 90(2003):113903.
[41] Gehring G M, Schweinsberg A, Barsi C, et al. Observation of back-ward pulse propagation through a medium with a negative group veloci-ty[J]. Science, 2006, 312(5775):895-897.
[42] Schweinsberg A, Lepeshkin N N, Bigelow M S, et al. Observation of superluminal and slow light propagation in erbium-doped optical fiber[J]. Europhysics Letters, 2006, 73(2):218-224.
[43] Baldit E, Bencheikh K, Monnier P, et al. Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal[J]. Physical Review Letters, 2005, 95(14):143601-143604.
[44] Bigelow M S, Lepeshkin N N, Shin H, et al. Propagation of smooth and discontinuous signals through materials with very large or very small group velocities[J]. Journal of Physics:Condensed Matter, 2006, 18(11):3117-3126.
[45] Yu C, Luo T, Zhang L, et al. Data pulse distortion induced by a slowlight tunable delay line in optical fiber[J]. Optics Letter, 2007, 32(1):20-22.
[46] Melle S, Calderón O G, Carreño F, et al. Effect of ion concentration on slow light propagation in highly doped erbium fibers[J]. Optics Com-munications, 2007, 279(1):53-63.
[47] Zhang Yundong, Ye Jianbo, Qiu Wei. Optical amplification and slow light based on two-wave mixing at large modulation depth[J]. Chinese Physics Letters, 2007, 24(5):1248-1251.
[48] Zhang Yundong, Wei Qiu, Ye Jianbo, et al. Controllable ultraslow light propagation in highly-doped erbium fiber[J]. Optics Communica-tions, 2008, 281(9):2633-2637.
[49] Calderón O G, Melle S, Antón M A, et al. Propagation-induced transi-tion from slow to fast light in highly doped erbium fibers[J]. Physical Review A, 2008, 78(5):053812.
[50] Arrieta-Yañez F, Melle S, Calderón O G, et al. Phase tunability of group velocity by modulated pump forced coherent population oscilla-tions[J]. Physical Review A, 2009, 80(1):011804.
[51] Jiulin Gan, Jiali Chen, Shanhui Xu, et al. Slow/fast light using a very short Er3+/Yb3+ co-doped fiber[J]. Optics Letter, 2013, 38(5):670-672.
[52] Ku P C, Sedgwick F, Chang-Hasnain C J, et al. Slow light in semicon-ductor quantum wells[J]. Optics Letter, 2004, 29(19):2291-2293.
[53] Pesala B, Chen Z, Uskov A V, et al. Experimental demonstration of slow and superluminal light in semiconductor optical amplifiers[J]. Op-tics Express, 2006, 14(26):12968-12975.
[54] Wang Fu, Wang Zhi, Wu Chongqing, et al. Compared Propagation characteristics of superluminal and slow light in SOA and EDFA based on rectangle signal[J]. Optics Communications, 2014, 352:96-109.
[55] Xue W Q, Chen Y H, Öhman F, et al. Enhancing light slow-down in semiconductor optical amplifers by optical filtering[J]. Optics Letter, 2008, 33(10):1084-1086.
[56] Xue W Q, Sales S, Capmany J, et al. Microwave phase shifter with controllable power response based on slow-and fast-light effects in semiconductor optical amplifiers[J]. Optics Letter, 2009, 34(7):929-931.
[57] Pesala B, Sedgwick F, Uskov A, et al. Ultrahigh-bandwidth electrical-ly tunable fast and slow light in semiconductor optical amplifiers[J]. Journal of the Optical Society of America B, 2009, 25(12):C46-C54.
[58] Moon S H, Park J, Oh J M, et al. Strong tunale slow and fast lights using a gain-clamped semiconductor optical amplifier[J]. Optics Ex-press, 2009, 17(23) 21222-21227.
[59] Berger P, Bourderionnet J, Bretenaker F, et al. Time delay generation at high frequency using SOA based slow and fast light[J]. Optics Ex-press, 2011, 19(22):21180-21188.
[60] Wang F, Wang Z, Wu C Q, et al. Tailoring the time delay of optical pulse/sequence employing cascaded SOA and band-pass filter[J]. Jour-nal of Modern Optics, 2016, 63(11):1092-1098.
[61] Wang F, Wu C Q, Wang Z, et al. Evaluation of slow light periodic sig-nals considering the distortion in EDF[J]. Chinese Physics Letters, 2014, 31(3):034207.
[62] Kravtsov K S, Fok M P, Prucnal P R, et al. Ultrafast all-optical implementation of a leaky integrate-and-fire neuron[J]. Optics Express, 2011, 19(3):2133-2147.
[63] Rosenbluth D, Kravtsov K, Fok M P, et al. A high performance photon-ic pulse processing device[J]. Optics Express, 2009, 17(25):22767-22772.
[64] Fok M P, Deming H, Nahmias M, et al. Signal feature recognition based on lightwave neuromorphic signal processing[J]. Optics Letter, 2011, 36(1):19-21.
[65] Fok M P, Tian Y, Rosenbluth D, et al. Asynchronous spiking photonic neuron for lightwave neuromorphic signal processing[J]. Optics Letter, 2012, 37(16):3309-3311.
[66] Kravtsov K, Prucnal P R, Bubnov M M. Simple nonlinear interferome-ter-based all-optical thresholder and its applications for optical CDMA[J]. Optics Express, 2007, 15(20):13114-13122.
[67] Li Q, Wang Z, Wu C, et al. NOLM-based all-optical thresholder[J]. Chinese Journal of Lasers, 2015, 42(7):705001.
[68] Tait A N, Shastri B J, Fok M P, et al. The DREAM:An integrated photonic thresholder[J]. Journal of Lightwave Technology, 2013, 31(8):1263-1272.
[69] Sokoloff J P, Prucnal P R, Glesk I, et al. A terahertz optical asymmet-ric demultiplexer (TOAD)[J]. Photonics Technology Letters, 1993, 5(7):787-790.
[70] Fok M P, Tian Y, Rosenbluth D, et al. Optical hybrid analog-digital signal processing based on spike processing in neurons[C]//SPIE Op-tics and Photonics for Information Processing V. San Diego, USA:International Society for Optics and Photonics, 2011, 8134:813402.
[71] Nahmias M A, Tait A N, Shastri B J, et al. An evanescent hybrid sili-con laser neuron[C]//2013 IEEE Photonics Conference. Bellevue, Australia:IEEE, 2013:93-94.
[72] Shastri Bhavin J, Nahmias Mitchell A, Tait Alexander N, et al. Graphene excitable laser for photonic spike processing[C]//2013 IEEE Photonics Conference. Bellevue, Australia:IEEE, 2013:1-2.
[73] Fok M P, Tian Y, Rosenbluth D, et al. Pulse lead/lag timing detection for adaptive feedback and control based on optical spike-timing-de-pendent plasticity[J]. Optics Letter, 2013, 38(4):419-421.
[74] Toole R, Fok M P. Photonic implementation of a neuronal algorithm applicable towards angle of arrival detection and localization[J]. Optics Express, 2015, 23(12):16133-16141.
[75] Ren Q S, Zhang Y L, Wang R, et al. Optical spike-timing-dependent plasticity with weight-dependent learning window and reward modulation[J]. Optics Express, 2015, 23(19), 25247-25258.
[76] Zhang Y L, Ren Q S, Zhao J, Implementation of optical multiplicative spike-timing dependent plasticity with adaptive current feedback of semiconductor optical amplifiers[C]//CLEO:Applications and Technology 2015. San Jose, California:Optical Society of America, 2015:JW2A.80.
Outlines

/