[1] 陈曦. 超材料的电磁特性与应用研究[D]. 长沙:国防科学技术大学, 2013. Chen Xi. Research on the electromagnetic characters and applications of metamaterial[D]. Changsha:National University of Defense Technology, 2013.
[2] 张辉. 超常介质的电磁特性及其应用研究[D]. 长沙:国防科技大学, 2009. Zhang Hui. Investigation on matamaterials and its application[D]. Changsha:National University of Defense Technology, 2009.
[3] 徐亚东. 用超材料操控波导中电磁波的传播[D]. 苏州:苏州大学, 2014. Xu Yadong. Manipulating the propagations of electromagnetic waves inside waveguide by employing metamaterials[D]. Suzhou:Suzhou University, 2014.
[4] Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514):77-79.
[5] Eleftheriades G V, Iyer A K, Kremer P C. Planar negative refractive index media using periodically L-C loaded transmission lines[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(12):2702-2712.
[6] Cui T J, Smith D R, Liu R P. Metamaterials:theory, design, and application[M]. New York:Springer, 2010:1-4.
[7] Li J, Chan C T. Double-negative acoustic metamaterial[J]. Physical Review E, 2004, 70(5):055602.
[8] Chen H Y, Chan C T, Liu S Y, et al. A simple route to a tunable electromagnetic gateway[J/OL]. New Journal of Physics, 2009, 11[2016-09-24]. http://iopscience.iop.org/1367-2630/11/8/083012.
[9] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312:1780-1782.
[10] Leonhardt U. Optical Conformal Mapping[J]. Science, 2006, 312:1777-1780.
[11] Schurig J J, Mock B J, Justice S A, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(10):977-980.
[12] Cai W, Chettiar U K, Kildishev A V, et al. Optical cloaking with metamaterials[J]. Nature photonics, 2007, 1(4):224-227.
[13] Huang Y, Feng Y, Jiang T. Electromagnetic cloaking by layer structures of homogeneous isotropic materls[J]. Optics express, 2007, 15(18):11133.
[14] Ruan Z C, Yan M, Neff C W, et al. Ideal cylindrical cloak:perfect but sensitive to tiny perturbations[J]. Physical Review Letters, 2007, 99(11):113903.
[15] Yan M, Ruan Z C, Qiu M. Cylindrical invisibility cloak with simplified material parameters is inherently visible[J]. Physical Review E, 2007, 99:233901.
[16] Jiang W X, Cui T J, Yu G X, et al. Arbitrarily elliptical-cylindrical invisible cloaking[J]. Journal of Physics D:Applied Physics, 2008, 41(8):085504.
[17] Li J, Pendry J B. Hiding under the carpet:A new strategy for cloaking[J]. 2008, 101(20):203901.
[18] Valentine J, Li J, Zentgraf T, et al. An optical clock made of dielectrics[J]. Nature Materials, 2009, 8, 568-571.
[19] Liu R, Ji C, Mock J J, et al. Broadband ground-plane cloak[J]. Science, 2009, 323(5912):366-369.
[20] Yu G X, Jiang W X, Cui T J. Invisible slab cloaks via embedded optical transformation[J]. Applied Physics Letters, 2009, 94:041904.
[21] Xu X F, Feng Y J, Hao Y, et al. Infrared carpet cloak designed with uniform silicon grating structure[J]. Applied Physics Letters, 2009, 95(18):184102.
[22] Ma H F, Cui T J. Three-dimensional broadband ground-plane cloak made of metamaterials[J/OL]. Nature Communications, 2010, 1[2016-09-24]. http://www.nature.com/ncomms/journal/v1/n3/full/ncomms1023.html. DOI:10.1038/ncomms1023.
[23] Lai Y, Chen H Y, Zhang Z Q, et al. Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell[J]. Physical Review Letters, 2009, 102(9):093901.
[24] Han T C, Tang X H, Xiao F. External cloak with homogeneous material[J]. Journal of Physics D:Applied Physics, 2009, 42(23):235403.
[25] Yang C F, Yang J, et al. An external clock with arbitrary cross section based on complementary medium and coordinate transformation[J]. Optics Express, 2011, 19(2):1147.
[26] 杨成福. 电磁坐标变换及其应用研究[D]. 昆明:云南大学, 2010. Yang Chengfu. Application research of electromagnetic coordinate transformation[D]. Kunming:Yunnan University, 2010.
[27] Han T C, Qiu C W, Tang X H. Distributed external cloak without embedded antiobjects[J]. Optics Express, 2010, 35(15):2642.
[28] 许卫锴, 卢少微, 马克明, 等. 超材料在隐身领域的研究及应用进展[J]. 功能材料, 2014, 45(4):4017-4026. Xu Weikai, Lu Shaowei, Ma Keming, et al. Research and application progress in the field of stealth based on metamaetrials[J]. Journal of Functional Materials, 2014, 45(4):4017-4026.
[29] 王金金, 左翔, 赵选科, 等. 隐身斗篷概述及其光学理论研究[J]. 信息技术, 2015, 44(5):139-142. Wang Jinjin, Zuo Xiang, Zhao Xuanke, et al. Overview of electromagnetic invisibility cloak[J]. Machine Building & Automation, 2015, 44(5):139-142.
[30] 来自未来的"魔法材料":隐身超材料[EB/OL]. (2015-04-07). http://www.360doc.com/content/15/0407/20/22754003_461371947.shtml.
[31] 中国新智能蒙皮技术或已实用比F-22更先进[EB/OL]. (2015-11-17). http://war.163.com/15/1117/08/B8K0L0KL00014OVF.html.
[32] 于相龙, 周济. 智能超材料研究与进展[J]. 材料工程, 2016, 44(7):119-128. Yu Xianglong, Zhou Ji. Research advance in smart matamaterials[J]. Journal of Materials Engineering, 2016, 44(7):119-128.
[33] 刘若鹏, 季春霖, 赵治亚. 超材料:重新塑造与重新思考[J]. 工程, 2015, 1(2):179-184.
[34] 超材料雷达:让智能车辆拥有一双"好眼睛"[EB/OL]. (2015-07-08). http://hk.stock.hexun.com/2015-07-08/177381833.html.
[35] 太赫兹超材料助力车联网智能汽车有望成为"变形金刚"[EB/OL]. (2015-04-14). http://finance.jrj.com.cn/2015/04/14141619097646.shtml.
[36] 新奇纳米超材料助推太阳能电池革命[EB/OL]. (2016-04-20). http://tech.163.com/16/0420/09/BL37958400094O5H.html.
[37] 中国科学家首次制造人造电磁黑洞[EB/OL]. (2013-12-16). http://tech.ifeng.com/discovery/detail_2013_12/16/32155457_0.shtml.
[38] Ramakrishna A S, Pendry J B. Imaging the near field[J]. Journal of Modern Optics. 2003, 50(9):1419-1430.
[39] Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721):534-537.
[40] Xiong Y, Liu Z, Sun C, et al. Two-dimensional imaging by far-field superlens at visible wavelengths[J]. Nano Letters. 2007, 7(11):3360-3365.
[41] Taubner T, Korobkin D, Urzhumov Y, et al. Near-field microscopy through a SiC superlens[J]. Science, 2006, 313(5793):1595.
[42] Fan W, Yan B, Wang Z B, et al. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies[J/OL]. Science Advances, 2016, 2(8)[2016-09-24]. http://advances.sciencemag.org/content/2/8/e1600901. Doi:10.1126/sciadv.1600901.
[43] Ziolkowski R W, Kipple A D, Application of double negative materials to increase the power radiated by electrically small antennas[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(10), 2626-2640.
[44] Ntaikos D K, Bourgis N K, Yioultsis T V. Metamaterial-Based electrically small multiband planar monopole antennas[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10:963-966
[45] Lizuka H, Hall P. A Left-Handed Dipole Concept[C]. 2006 IEEE International Workshop on Antenna Technology Small Antennas and Novel Metamaterials, New York, 2006, 396-399.
[46] Andrea A, Filiberto B, Nader E, et al. Theory and simulations of a conformal omni-directional subwavelengh metamaterial leaky-wave antenna[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(6), 1698-1708.
[47] Justin E, Viktor P A, Ildar S, et al. Nonlocal effects in effective-medium response of layered metamaterials[J/OL]. Applied Physics Letters, 2007, 90[2016-09-24]. http://dx.doi.org/10.1063/1.2737935. DOI:10.1063/1.2737935.
[48] Enoch S, Tayeb G, Sabouroux P, et al. A metamaterial for directive emission[J]. Physical Review Letters. 2002, 89(21):213902.
[49] Zhou H, Pei Z, Qu S, et al. A novel high-directivity microstrip patch antenna based on Zero-index metamaterial[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8:538-541.
[50] Zhou B, Cui T J. Directivity enhancement to vivaldi antennas using compactly anisotropic zero-index metamaterials[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10:326-329.
[51] Wu C Y, Yeh S H, Lu T H. Planar high gain antenna for 5.8-GHz WiMAX operation[C]//IEEE Region 10 Conference, 1-3.
[52] 刘佳. 超材料在光学传输方面的应用研究[D]. 南京航空航天大学, 2014. Liu Jia. Application of matamaterials in optical transmission[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014.