Articles

Simulation study on position and force feedback control for active suspension system with electro-hydrostatic actuator

  • ZHANG Peipei ,
  • YU Qiang ,
  • LEI Liangyu ,
  • ZHAO Xiangjun ,
  • ZHOU Chenyu
Expand
  • 1. School of Automobile, Chang'an University, Xi'an 710064, China;
    2. School of Engineering, Zhejiang Agriculture and Forestry University;Key Laboratory of Wood Science and Technology of Zhejiang Province, Hangzhou 311300, China

Received date: 2015-07-13

  Revised date: 2015-11-19

  Online published: 2016-10-21

Abstract

This paper discusses a multi-closed loop control strategy for an active suspension system of a quarter car model operated by an electro-hydrostatic actuator to trade-off between vehicle handling stability and passenger comfort. In order to provide a desirable dynamic behavior of hydraulic active suspension, the closed loop control strategy using fuzzy position feedback controller and linearization force feedback controller and referring to robot compliant control is proposed. The fuzzy position controller is to track a desired body displacement given by the impedance control and the linearization force controller to track a desired force. By using Matlab/Simulink, a vehicle model of suspension system for B road with 0.1 m hump road disturbance is simulated. The result shows that the root mean square values (RMS) of body vertical acceleration, suspension dynamic deflection and tire dynamic load of the active suspension system have been reduced compared to the passive suspension, greatly improving the vehicle handling stability and passenger comfort.

Cite this article

ZHANG Peipei , YU Qiang , LEI Liangyu , ZHAO Xiangjun , ZHOU Chenyu . Simulation study on position and force feedback control for active suspension system with electro-hydrostatic actuator[J]. Science & Technology Review, 2016 , 34(18) : 287 -292 . DOI: 10.3981/j.issn.1000-7857.2016.18.040

References

[1] 余志生. 汽车理论[M]. 北京:机械工业出版社, 2009. Yu Zhisheng. Automotive theory[M]. Beijing:China Machine Press, 2009.
[2] 马小良. 基于自适应阻抗控制的并联机器人柔顺控制研究[D]. 哈尔滨:哈尔滨工业大学机电工程学院,2009. Ma Xiaoliang. Research on compliant control of parallel manipulator based on adaptive impedance control[D]. Harbin:School of mechatronics engineering, Harbin Institute of Technology, 2009.
[3] 李昌, 叶正茂, 黄其涛.基于阻抗控制的阀控缸系统动态特性分[J]. 机械设计与制造, 2012(4):201-203. Li Chang, Ye Zhengmao, Huang Qitao. Dynamic properties analysis for valve controlled cylinder based on impedance control[J]. Machinery Design & Manufacture, 2012(4):201-203.
[4] 陈龙, 汪若尘, 江浩斌, 等. 车辆半主动悬架系统的设计与试验研究[J]. 农业工程学报, 2005, 21(8):58-61. Chen Long, Wang Ruochen, Jiang Haobin, et al. Design and experiment of semi-active suspension system for vehicles[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(8):58-61.
[5] 寇发荣. 车辆EHA主动悬架PID控制的试验研究[J]. 机床与液压, 2009, 37(4):94-96. Kou Farong. The experimental study on vehicle active suspension with elector-hydrostatic actuator[J]. Machine Tool & Hydraulics, 2009, 37(4):94-96.
[6] 于显利, 刘顺安, 刘佳琳. 车辆主动悬架耗散静态输出反馈控制器的设计[J]. 兰州理工大学学报, 2009, 35(2):76-79. Yu Xianli, Liu Shun'an, Liu Jialin. Design of dissipative static output feedback controller for active suspension of vehicles[J]. Journal of Lanzhou University of Technology, 2009, 35(2):76-79.
[7] 兰波, 喻凡. 车辆主动悬架LQG控制器的设计与仿真分析[J]. 农业机械学报, 2004, 35(1):13-17. Lan Bo, Yu Fan. Design and simulation analysis of LQG controller of active suspension[J]. Transactions of the Chinese Society of Agricultural Engineering, 2004, 35(1):13-17.
[8] 朱华. 车辆半主动悬架联合仿真研究[J]. 机械设计与制造, 2010(12):200-202. Zhu Hua. Co-simulation research on vehicle semi-active suspension[J]. Machinery Design & Manufacture, 2010(12):200-202.
[9] 季新杰, 李声晋, 芦刚, 等. 新型电动静液作动器主动悬架模糊PID控制[J]. 汽车工程, 2008, 30(5):437-440. Ji Xinjie, Li Shengjin, Lu Gang, et al. Fuzzy-PID control for new vehicle active suspension with electro-hydrostatic actuator[J]. Automotive Engineering, 2008, 30(5):437-440.
[10] Alleyne A, Liu R. On the limitations of force tracking control for hydraulic servosystems[J]. Journal of Dynamic Systems, Measurement, and Control, 1999, 121(2):184-190.
[11] Fateh M M, Alavi S S. Impedance control of an active suspension system[J]. Mechatronics, 2009(19):134-140.
[12] Katsuhiko Ogata. 现代控制工程[M]. 卢伯英, 佟明安,译. 北京:电子工业出版社,2012. Katsuhiko Ogata. Modern control engineering[M]. Lu Boying, Tong Ming'an, trans. Beijing:Electronics Industry Press, 2012.
[13] Surdilović D. Synthesis of impedance control laws at higher control levels:Algorithms and experiments[C]//Proceedings of Robotics and Automation, 1998. Leuven:IEEE, 1998:213-218.
Outlines

/