Special lssues

Perspective of stem cell and regenerative medicine

  • LIU Jing ,
  • CAO Shangtao ,
  • CAI Jinglei ,
  • PEI Duanqing
Expand
  • Key Laboratory of Regenerative Biology;Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine;South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China

Received date: 2016-10-14

  Revised date: 2016-10-19

  Online published: 2016-11-05

Abstract

Recently, a series of breakthroughs in stem cell and regenerative medicine, as the frontier and the hotspot of life sciences, brings numbers of revolutionary changes into the medical development. In this paper, we mainly summarize and analyze the current progresses and perspectives of the applications of stem cells from distinct resources in vitro and in vivo for the regenerative treatment and the roles of small molecules in the mechanisms involved in the cell fate transition and the functional cells obtained in vitro. Meanwhile, the safety and the regulation of the applications of the stem cell and regenerative medicine in the clinical therapy are discussed, to provide some food for thought for reasonable arrangements and plots in this field.

Cite this article

LIU Jing , CAO Shangtao , CAI Jinglei , PEI Duanqing . Perspective of stem cell and regenerative medicine[J]. Science & Technology Review, 2016 , 34(20) : 25 -33 . DOI: 10.3981/j.issn.1000-7857.2016.20.004

References

[1] McMahon D S, Thorsteinsdottir H, Singer P A, et al. Cultivating regenerative medicine innovation in China[J]. Regenerative Medicine, 2010, 5(1):35-44.
[2] Mason C, Dunnill P. A brief definition of regenerative medicine[J]. Regenerative Medicine, 2008, 3(1):1-5.
[3] Gunsilius E, Gastl G, Petzer A L. Hematopoietic stem cells[J]. Biomed Pharmacother, 2001, 55:186-194.
[4] Alison M R, Islam S. Attributes of adult stem cells[J]. Journal of Pathology, 2009, 217(2):144-160.
[5] Evans M J, Kaufman M H. Establishment in culture of pluripotential cells from mouse embryos[J]. Nature, 1981, 292:154-156.
[6] Thomson J A, Itskovitz-Eldor J, Shapiro S S, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science, 1998, 282(5391):1145-1147.
[7] Czyz J, Wiese C, Rolletschek A, et al. Potential of embryonic and adult stem cells in vitro[J]. Biological Chemistry, 2003, 384(10/11):1391-1409.
[8] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
[9] Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861872.
[10] Yu J Y, Vodyanik M A, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science, 2007, 318(5858):19171920.
[11] Zhou T, Benda C, Duzinger S, et al. Generation of induced pluripotent stem cells from urine[J]. Journal of the American Society of Nephrology, 2011, 22:1221-1228.
[12] Yu J, Hu K, Smuga-Otto K, et al. Human induced pluripotent stem cells free of vector and transgene sequences[J]. Science, 2009, 324:797-801.
[13] Chen G, Gulbranson D R, Hou Z, et al. Chemically defined conditions for human iPSC derivation and culture[J]. Nature Methods, 2011, 8(5):424-429.
[14] Esteban M A, Wang T, Qin B M, et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells[J]. Cell Stem Cell, 2010, 6:71-79.
[15] Wang L H, Wang L L, Huang W H, et al. Generation of integration-free neural progenitor cells from cells in human urine[J]. Nature Methods, 2013, 10:84-89.
[16] Lund R D, Wang S, Klimanskaya I, et al. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats[J]. Cloning Stem Cells, 2006, 8(3):189-199.
[17] Adijanto J, Philp N J. Cultured primary human fetal retinal pigment epithelium (hfRPE) as a model for evaluating RPE metabolism[J]. Experimental Eye Research, 2014, 126:77-84.
[18] Forrester J V, Xu H, Kuffová L, et al. Dendritic cell physiology and function in the eye[J]. Immunological Reviews, 2010, 234(1):282-304.
[19] Kamao H, Mandai M, Okamoto S, et al. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application[J]. Stem Cell Reports, 2014, 2(2):205-218.
[20] Okamoto S, Takahashi M. Induction of retinal pigment epithelial cells from monkey iPS cells[J]. Investigative Ophthalmology & Visual Science, 2011, 52(12):8785-8790.
[21] Zhao T, Zhang Z N, Rong Z, et al. Immunogenicity of induced pluripotent stem cells[J]. Nature, 2011, 474(7350):212-215.
[22] Scudellari M. A decade of iPS cells[J]. Nature, 2016, 534:310-312.
[23] Hochedlinger K, Jaenisch R. Nuclear reprogramming and pluripotency[J]. Nature, 2006, 441:1061-1067.
[24] Anokye-Danso F, Trivedi C M, Juhr D, et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency[J].Cell Stem Cell, 2011, 8(4):376-388.
[25] Zhou H, Wu S, Joo J Y, et al. Generation of induced pluripotent stem cells using recombinant proteins[J]. Cell Stem Cell, 2009, 8(4):381-384.
[26] Cheng L, Hansen N F, Zhao L, et al. Low incidence of DNA sequence variation in human induced pluripotent stem cells generated by nonintegrating plasmid expression[J]. Cell Stem Cell, 2012, 10:337-344.
[27] Li W, Li K, Wei W, et al. Chemical approaches to stem cell biology and therapeutics[J]. Cell Stem Cell, 2013, 13:270-283.
[28] Lin T, Ambasudhan R, Yuan X, et al. A chemical platform for improved induction of human iPSCs[J]. Nature Methods, 2009, 6:805-808.
[29] Xu Y, Shi Y, Ding S. A chemical approach to stem-cell biology and regenerative medicine[J]. Nature, 2008, 453:338-344.
[30] Huangfu D, Maehr R, Guo W, et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds[J]. Nature Biotechnology, 2008, 26:795-797.
[31] Huangfu D, Osafune K, Maehr R, et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2[J]. Nature Biotechnology, 2008, 26:1269-1275.
[32] Christman J K. 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation:Mechanistic studies and their implications for cancer therapy[J]. Oncogene, 2002, 21:5483-5495.
[33] Li W, Zhou H, Abujarour R, et al. Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2[J]. Stem Cells, 2009, 27:29923000.
[34] Esteban M A, Pei D. Vitamin C improves the quality of somatic cell reprogramming[J]. Nature Genetics, 2012, 44:366-367.
[35] Wang T, Chen K, Zeng X, et al. The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner[J]. Cell Stem Cell, 2011, 9:575-587.
[36] Chen J, Guo L, Zhang L, et al. Vitamin C modulates TET1 function during somatic cell reprogramming[J]. Nature Genetics, 2013, 45(12):1504-1509.
[37] Chen J, Liu H, Liu J, et al. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs[J]. Nature Genetics, 2013, 45(1):34-42.
[38] Marson A, Foreman R, Chevalier B, et al. Wnt signaling promotes reprogramming of somatic cells to pluripotency[J]. Cell Stem Cell, 2008, 3:132-135.
[39] Chen J, Han Q, Pei D. EMT and MET as paradigms for cell fate switching[J]. Journal of Molecular Cell Biology, 2012, 4(2):66-69.
[40] Li R, Liang J, Ni S, et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts[J]. Cell Stem Cell, 2010, 7:51-63.
[41] Shi Y, Desponts C, Do J T, et al. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds[J]. Cell Stem Cell, 2008, 3:568-574.
[42] Zhu S, Li W, Zhou H, et al. Reprogramming of human primary somatic cells by OCT4 and chemical compounds[J]. Cell Stem Cell, 2010, 7:651-655.
[43] Ichida J K, Blanchard J, Lam K, et al. A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog[J]. Cell Stem Cell, 2009, 5:491-503.
[44] Hou P, Li Y, Zhang X, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds[J]. Science, 2013, 341:651-654.
[45] Zhao Y, Zhao T, Guan J, et al. A XEN-like state bridges somatic cells to pluripotency during chemical reprogramming[J]. Cell, 2015, 163:1678-1691.
[46] D'Amour K A, Agulnick A D, Eliazer S, et al. Efficient differentiation of human embryonic stem cells to definitive endoderm[J]. Nature Biotechnology, 2005, 23:1534-1541.
[47] Efe J A, Hilcove S, Kim J, et al. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy[J]. Nature Cell Biology, 2011, 13:215-222.
[48] Graf T. Historical origins of transdifferentiation and reprogramming[J]. Cell Stem Cell, 2011, 9:504-516.
[49] Sekiya S, Suzuki A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors[J]. Nature, 2011, 475:390-393.
[50] Huang P, He Z, Ji S, et al. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors[J]. Nature, 2011, 475:386-389.
[51] Borowiak M, Maehr R, Chen S, et al. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells[J]. Cell Stem Cell, 2009, 4:348-358.
[52] Hu W, Qiu B, Guan W, et al. Direct conversion of normal and Alzheimer's disease human fibroblasts into neuronal cells by small molecules[J]. Cell Stem Cell, 2015, 17:204-212.
[53] Li X, Zuo X, Jing J, et al. Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons[J]. Cell Stem Cell, 2015, 17:195-203.
[54] Wang Y, Qin J, Wang S, et al. Conversion of human gastric epithelial cells to multipotent endodermal progenitors using defined small molecules[J]. Cell Stem Cell, 2016, 19:1-13.
[55] Cao N, Huang Y, Zheng J, et al. Conversion of human fibroblasts into functional cardiomyocytes by small molecules[J]. Science, 2016, 352:1216-1220.
[56] Wang L, Li X, Huang W, et al. TGFβ signaling regulates the choice between pluripotent and neural fates during reprogramming of human urine derived cells[J]. Scientific Reports, 2016, 6:22484.
[57] Ying Q L, Wray J, Nichols J, et al. The ground state of embryonic stem cell self-renewal[J]. Nature, 2008, 453:519-523.
[58] Nichols J, Smith A. Naive and primed pluripotent states[J]. Cell Stem Cell, 2009, 4:487-492.
[59] Takashima Y, Guo G, Loos R, et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human[J]. Cell, 2014, 158:1254-1269.
[60] Chan Y S, Goke J, Ng J H, et al. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast[J]. Cell Stem Cell, 2013, 13:663-675.
[61] Gafni O, Weinberger L, Mansour A A, et al. Derivation of novel human ground state naive pluripotent stem cells[J]. Nature, 2013, 504:282-286.
[62] Ware C B, Nelson A M, Mecham B, et al. Derivation of naive human embryonic stem cells[J]. PNAS, 2014, 111(12):4484-4489.
[63] Theunissen T W, Powell B E, Wang H, et al. Systematic identification of culture conditions for induction and maintenance of naïve human pluripotency[J]. Cell Stem Cell, 2014, 15:471-487.
[64] Srivastava D, DeWitt N. In vivo cellular reprogramming:The next generation[J]. Cell, 2016, 166(6):1386-1396.
[65] Lengner C J. iPS cell technology in regenerative medicine[J]. Annals of the New York Academy of Sciences, 2010, 1192:38-44.
[66] Tabar V, Studer L. Pluripotent stem cells in regenerative medicine:Challenges and recent progress[J]. Nature Reviews Genetics, 2014, 15(2):82-92.
[67] Ashley E A. Towards precision medicine[J]. Nature Reviews Genetics, 2016, 17:507-522.
[68] Schwartz S D, Hubschman J P, Heilwell G, et al. Embryonic stem cell trials for macular degeneration:A preliminary report[J]. The Lancet, 2012, 379(9817):713-720.
[69] Tonellato P J, Crawford J M, Boguski M S, et al. A national agenda for the future of pathology in personalized medicine:Report of the proceedings of a meeting at the Banbury Conference Center on genome-era pathology, precision diagnostics, and preemptive care:A stakeholder summit[J]. American Journal of Clinical Pathology, 2011, 135(5):668-672.
[70] Obama, B. United States health care reform:Progress to date and next steps[J]. Journal of the American Medical Association, 2016, 316(5):525-532.
[71] Twilt M. Precision medicine:The new era in medicine[J]. EbioMedicine, 2016, 4:24-25.
[72] Pelaez N, Gavalda-Miralles A, Wang B, et al. Dynamics and heterogeneity of a fate determinant during transition towards cell differentiation[J]. eLife, 2015, 4. doi:10.7554/eLife.08924.
[73] Maheswaran S, Haber D A. Cell fate:Transition loses its invasive edge[J]. Nature, 2015, 527:452-453.
[74] Moris N, Pina C, Arias A M. Transition states and cell fate decisions in epigenetic landscapes[J]. Nature Reviews Genetics, 2016. doi:10.1038/nrg.2016.98.
[75] Wu Q, Ng H H. Mark the transition:chromatin modifications and cell fate decision[J]. Cell Research, 2011, 21:1388-1390.
Outlines

/