[1] McMahon D S, Thorsteinsdottir H, Singer P A, et al. Cultivating regenerative medicine innovation in China[J]. Regenerative Medicine, 2010, 5(1):35-44.
[2] Mason C, Dunnill P. A brief definition of regenerative medicine[J]. Regenerative Medicine, 2008, 3(1):1-5.
[3] Gunsilius E, Gastl G, Petzer A L. Hematopoietic stem cells[J]. Biomed Pharmacother, 2001, 55:186-194.
[4] Alison M R, Islam S. Attributes of adult stem cells[J]. Journal of Pathology, 2009, 217(2):144-160.
[5] Evans M J, Kaufman M H. Establishment in culture of pluripotential cells from mouse embryos[J]. Nature, 1981, 292:154-156.
[6] Thomson J A, Itskovitz-Eldor J, Shapiro S S, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science, 1998, 282(5391):1145-1147.
[7] Czyz J, Wiese C, Rolletschek A, et al. Potential of embryonic and adult stem cells in vitro[J]. Biological Chemistry, 2003, 384(10/11):1391-1409.
[8] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
[9] Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861872.
[10] Yu J Y, Vodyanik M A, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science, 2007, 318(5858):19171920.
[11] Zhou T, Benda C, Duzinger S, et al. Generation of induced pluripotent stem cells from urine[J]. Journal of the American Society of Nephrology, 2011, 22:1221-1228.
[12] Yu J, Hu K, Smuga-Otto K, et al. Human induced pluripotent stem cells free of vector and transgene sequences[J]. Science, 2009, 324:797-801.
[13] Chen G, Gulbranson D R, Hou Z, et al. Chemically defined conditions for human iPSC derivation and culture[J]. Nature Methods, 2011, 8(5):424-429.
[14] Esteban M A, Wang T, Qin B M, et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells[J]. Cell Stem Cell, 2010, 6:71-79.
[15] Wang L H, Wang L L, Huang W H, et al. Generation of integration-free neural progenitor cells from cells in human urine[J]. Nature Methods, 2013, 10:84-89.
[16] Lund R D, Wang S, Klimanskaya I, et al. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats[J]. Cloning Stem Cells, 2006, 8(3):189-199.
[17] Adijanto J, Philp N J. Cultured primary human fetal retinal pigment epithelium (hfRPE) as a model for evaluating RPE metabolism[J]. Experimental Eye Research, 2014, 126:77-84.
[18] Forrester J V, Xu H, Kuffová L, et al. Dendritic cell physiology and function in the eye[J]. Immunological Reviews, 2010, 234(1):282-304.
[19] Kamao H, Mandai M, Okamoto S, et al. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application[J]. Stem Cell Reports, 2014, 2(2):205-218.
[20] Okamoto S, Takahashi M. Induction of retinal pigment epithelial cells from monkey iPS cells[J]. Investigative Ophthalmology & Visual Science, 2011, 52(12):8785-8790.
[21] Zhao T, Zhang Z N, Rong Z, et al. Immunogenicity of induced pluripotent stem cells[J]. Nature, 2011, 474(7350):212-215.
[22] Scudellari M. A decade of iPS cells[J]. Nature, 2016, 534:310-312.
[23] Hochedlinger K, Jaenisch R. Nuclear reprogramming and pluripotency[J]. Nature, 2006, 441:1061-1067.
[24] Anokye-Danso F, Trivedi C M, Juhr D, et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency[J].Cell Stem Cell, 2011, 8(4):376-388.
[25] Zhou H, Wu S, Joo J Y, et al. Generation of induced pluripotent stem cells using recombinant proteins[J]. Cell Stem Cell, 2009, 8(4):381-384.
[26] Cheng L, Hansen N F, Zhao L, et al. Low incidence of DNA sequence variation in human induced pluripotent stem cells generated by nonintegrating plasmid expression[J]. Cell Stem Cell, 2012, 10:337-344.
[27] Li W, Li K, Wei W, et al. Chemical approaches to stem cell biology and therapeutics[J]. Cell Stem Cell, 2013, 13:270-283.
[28] Lin T, Ambasudhan R, Yuan X, et al. A chemical platform for improved induction of human iPSCs[J]. Nature Methods, 2009, 6:805-808.
[29] Xu Y, Shi Y, Ding S. A chemical approach to stem-cell biology and regenerative medicine[J]. Nature, 2008, 453:338-344.
[30] Huangfu D, Maehr R, Guo W, et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds[J]. Nature Biotechnology, 2008, 26:795-797.
[31] Huangfu D, Osafune K, Maehr R, et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2[J]. Nature Biotechnology, 2008, 26:1269-1275.
[32] Christman J K. 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation:Mechanistic studies and their implications for cancer therapy[J]. Oncogene, 2002, 21:5483-5495.
[33] Li W, Zhou H, Abujarour R, et al. Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2[J]. Stem Cells, 2009, 27:29923000.
[34] Esteban M A, Pei D. Vitamin C improves the quality of somatic cell reprogramming[J]. Nature Genetics, 2012, 44:366-367.
[35] Wang T, Chen K, Zeng X, et al. The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner[J]. Cell Stem Cell, 2011, 9:575-587.
[36] Chen J, Guo L, Zhang L, et al. Vitamin C modulates TET1 function during somatic cell reprogramming[J]. Nature Genetics, 2013, 45(12):1504-1509.
[37] Chen J, Liu H, Liu J, et al. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs[J]. Nature Genetics, 2013, 45(1):34-42.
[38] Marson A, Foreman R, Chevalier B, et al. Wnt signaling promotes reprogramming of somatic cells to pluripotency[J]. Cell Stem Cell, 2008, 3:132-135.
[39] Chen J, Han Q, Pei D. EMT and MET as paradigms for cell fate switching[J]. Journal of Molecular Cell Biology, 2012, 4(2):66-69.
[40] Li R, Liang J, Ni S, et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts[J]. Cell Stem Cell, 2010, 7:51-63.
[41] Shi Y, Desponts C, Do J T, et al. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds[J]. Cell Stem Cell, 2008, 3:568-574.
[42] Zhu S, Li W, Zhou H, et al. Reprogramming of human primary somatic cells by OCT4 and chemical compounds[J]. Cell Stem Cell, 2010, 7:651-655.
[43] Ichida J K, Blanchard J, Lam K, et al. A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog[J]. Cell Stem Cell, 2009, 5:491-503.
[44] Hou P, Li Y, Zhang X, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds[J]. Science, 2013, 341:651-654.
[45] Zhao Y, Zhao T, Guan J, et al. A XEN-like state bridges somatic cells to pluripotency during chemical reprogramming[J]. Cell, 2015, 163:1678-1691.
[46] D'Amour K A, Agulnick A D, Eliazer S, et al. Efficient differentiation of human embryonic stem cells to definitive endoderm[J]. Nature Biotechnology, 2005, 23:1534-1541.
[47] Efe J A, Hilcove S, Kim J, et al. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy[J]. Nature Cell Biology, 2011, 13:215-222.
[48] Graf T. Historical origins of transdifferentiation and reprogramming[J]. Cell Stem Cell, 2011, 9:504-516.
[49] Sekiya S, Suzuki A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors[J]. Nature, 2011, 475:390-393.
[50] Huang P, He Z, Ji S, et al. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors[J]. Nature, 2011, 475:386-389.
[51] Borowiak M, Maehr R, Chen S, et al. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells[J]. Cell Stem Cell, 2009, 4:348-358.
[52] Hu W, Qiu B, Guan W, et al. Direct conversion of normal and Alzheimer's disease human fibroblasts into neuronal cells by small molecules[J]. Cell Stem Cell, 2015, 17:204-212.
[53] Li X, Zuo X, Jing J, et al. Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons[J]. Cell Stem Cell, 2015, 17:195-203.
[54] Wang Y, Qin J, Wang S, et al. Conversion of human gastric epithelial cells to multipotent endodermal progenitors using defined small molecules[J]. Cell Stem Cell, 2016, 19:1-13.
[55] Cao N, Huang Y, Zheng J, et al. Conversion of human fibroblasts into functional cardiomyocytes by small molecules[J]. Science, 2016, 352:1216-1220.
[56] Wang L, Li X, Huang W, et al. TGFβ signaling regulates the choice between pluripotent and neural fates during reprogramming of human urine derived cells[J]. Scientific Reports, 2016, 6:22484.
[57] Ying Q L, Wray J, Nichols J, et al. The ground state of embryonic stem cell self-renewal[J]. Nature, 2008, 453:519-523.
[58] Nichols J, Smith A. Naive and primed pluripotent states[J]. Cell Stem Cell, 2009, 4:487-492.
[59] Takashima Y, Guo G, Loos R, et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human[J]. Cell, 2014, 158:1254-1269.
[60] Chan Y S, Goke J, Ng J H, et al. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast[J]. Cell Stem Cell, 2013, 13:663-675.
[61] Gafni O, Weinberger L, Mansour A A, et al. Derivation of novel human ground state naive pluripotent stem cells[J]. Nature, 2013, 504:282-286.
[62] Ware C B, Nelson A M, Mecham B, et al. Derivation of naive human embryonic stem cells[J]. PNAS, 2014, 111(12):4484-4489.
[63] Theunissen T W, Powell B E, Wang H, et al. Systematic identification of culture conditions for induction and maintenance of naïve human pluripotency[J]. Cell Stem Cell, 2014, 15:471-487.
[64] Srivastava D, DeWitt N. In vivo cellular reprogramming:The next generation[J]. Cell, 2016, 166(6):1386-1396.
[65] Lengner C J. iPS cell technology in regenerative medicine[J]. Annals of the New York Academy of Sciences, 2010, 1192:38-44.
[66] Tabar V, Studer L. Pluripotent stem cells in regenerative medicine:Challenges and recent progress[J]. Nature Reviews Genetics, 2014, 15(2):82-92.
[67] Ashley E A. Towards precision medicine[J]. Nature Reviews Genetics, 2016, 17:507-522.
[68] Schwartz S D, Hubschman J P, Heilwell G, et al. Embryonic stem cell trials for macular degeneration:A preliminary report[J]. The Lancet, 2012, 379(9817):713-720.
[69] Tonellato P J, Crawford J M, Boguski M S, et al. A national agenda for the future of pathology in personalized medicine:Report of the proceedings of a meeting at the Banbury Conference Center on genome-era pathology, precision diagnostics, and preemptive care:A stakeholder summit[J]. American Journal of Clinical Pathology, 2011, 135(5):668-672.
[70] Obama, B. United States health care reform:Progress to date and next steps[J]. Journal of the American Medical Association, 2016, 316(5):525-532.
[71] Twilt M. Precision medicine:The new era in medicine[J]. EbioMedicine, 2016, 4:24-25.
[72] Pelaez N, Gavalda-Miralles A, Wang B, et al. Dynamics and heterogeneity of a fate determinant during transition towards cell differentiation[J]. eLife, 2015, 4. doi:10.7554/eLife.08924.
[73] Maheswaran S, Haber D A. Cell fate:Transition loses its invasive edge[J]. Nature, 2015, 527:452-453.
[74] Moris N, Pina C, Arias A M. Transition states and cell fate decisions in epigenetic landscapes[J]. Nature Reviews Genetics, 2016. doi:10.1038/nrg.2016.98.
[75] Wu Q, Ng H H. Mark the transition:chromatin modifications and cell fate decision[J]. Cell Research, 2011, 21:1388-1390.