In order to explore the hydrogeological supply order and conceptual hydrogeological model of the Gasikule Salt Lake, PHREEQC software is used to calculate the existence forms of chemical compositions and saturation indexes of various waters from Gasikule salt lake located in the western margin of Qinghai province. The results reveal that Na, K, Ca, Mg, C(4), Cl and S(6) are mainly in the forms of free ions Na+, K+, Ca2+, Mg2+, HCO3-, Cl- and HCO42-, while only small amounts of Mg, C(4) and S(6) form complexes with other ions. The conceptual hydrogeological model is shown as follows. Firstly, most of the stream water formed by precipitation and snow melt supplies the mudstone layer and forms the confined water. Secondly, most of the confined water supplies pore water and eventually enters lake water. Thirdly, the lake water is transfered to surface brine and intercrystalline brine after strong evaporation and concentration effect due to cold and dry climate. Fourthly, the deep CaCl2 type brine continuously supplies the surface brine area and intercrystalline brine area by the buried faults existing at the east surface brine area and the Karst channel existing at the salina, respectively. Fifthly, the surface brine and intercrystalline brine exchange deeply. This study may provide some basic information for the hydrogeological evolution of the salt lake in the Qinghai-Tibet Plateau.
[1] 郭张军, 宋汉周. 地下水化学组分存在形式及其SI值计算[J]. 资源环境与工程, 2005, 19(3):200-219. Guo Zhangjun, Song Hanzhou. Chemical components in groundwater and its SI values[J]. Resources Environment & Engineering, 2005, 19(3):200219.
[2] 沈照理, 朱宛华, 钟佐燊. 水文地球化学基础[M]. 北京:地质出版社, 1993:62-93. Shen Zhaoli, Zhu Wanhua, Zhong Zuoshen. Basis of hydrogeochemistry[M]. Beijing:Geological Publishing House, 1993:62-93.
[3] 王东胜, 曾溅辉. 地下水化学组分存在形式的计算及其意义[J]. 水文地质工程地质,1999(6):48-51. Wang Dongsheng, Zeng Jianhui. Calculation of the existing form of the groundwater chemical composition and its significance[J]. Hydrogeology & Engineering Geology, 1999(6):48-51.
[4] 杨平恒, 袁道先, 叶许春, 等. 降雨期间岩溶地下水化学组分的来源及运移路径[J]. 科学通报, 2013, 58(18):1755-1763. Yang Pingheng, Yuan Daoxian, Ye Xuchun, et al. Sources and migration path of chemical compositions in a karst groundwater system during rainfall events[J]. Chinese Science Bulletin, 2013, 58(18):1755-1763.
[5] Millero F J, Pierrot D. A chemical equilibrium model for natural waters[J]. Aquatic Geochemistry, 1998, 4:153-199.
[6] Harvie C E, Moller N, Weare J. The prediction of mineral solutions in natural waters:The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25℃[J]. Geochimica et Cosmochimica Acta, 1984, 48:723-751.
[7] Anderson M A, Morel F M M. The influence of aqueous iron chemistry on the uptake of ion by the coastal diatom Thalassiosira weissflogii[J]. Limnology and Oceanography, 1982, 27:789-813.
[8] Pitzer K S. Thermodynamics of electrolytes,Ⅰ. Theoretical basis and general equations[J]. The Journal of Physical Chemistry, 1973, 77:268-277.
[9] Ye Chuanyong, Zheng Mianping, Wang Zhiming, et al. Hydrochemical characteristics and sources of brines in the Gasikule salt lake, Northwest Qaidam Basin, China[J]. Geochemical Journal, 2015, 49:481-494.
[10] Parkhurst D L, Appelo C A J. Description of input and examples for PHREEQC version 3A computer program for speciation, batchreaction, onedimensional transport, and inverse geochemical calculations[M]. U.S.Geological Survey Techniques and Methods, 2013:1-497.
[11] 朱义年, 王焰新. 地下水地球化学模拟的原理及应用[M]. 武汉:中国地质大学出版社, 2005:1-73. Zhu Yinian, Wang Yanxin. Principles and applications of geochemical modeling of groundwater[M]. Wuhan:China University of Geosciences Press, 2005:1-73.
[12] 钱会, 马致远. 水文地球化学[M]. 北京:地质出版社, 2005:191-218. Qian Hui, Ma Zhiyuan. Hydrogeochemistry[M]. Beijing:Geological Publishing House, 2005:191-218.
[13] Iwatsuki T, Furue R, Mie H, et al. Hydrochemical baseline condition of groundwater at the Mizunami underground research laboratory (MIU)[J]. Applied Geochemistry, 2005, 20:2283-2302.
[14] Merkel B J, Planer-Friedrich B. Groundwater Geochemistry-A practical guide to modeling of natural and contaminated aquatic systems[M]. 2nd ed. German:Springer-Verlag, 2008:19-34.
[15] Metz V, Kienzler B, SchÜßler W. Geochemical evaluation of different groundwater-host rock systems for radioactive waste disposal[J]. Journal of Contaminant Hydrology, 2003, 61:265-279.
[16] 郭永海, 王驹, 吕川河, 等. 高放废物处置库甘肃北山野马泉预选区地下水化学特征及水-岩作用模拟[J]. 地学前缘, 2005, 12(Suppl 1):117-123. Guo Yonghai, Wang Ju, Lü Chuanhe, et al. Chemical characteristics ofgroundwater and water-rock interaction:Modeling of the Yemaquan preselected area for China's high level radioactive waste repository[J]. Earth Science Frontiers, 2005, 12(Suppl 1):117-123.
[17] Hoareau G, Monnin C, Odonne F. The stability of gypsum in marine sediments using the entire ODP/IODP porewater composition database[J]. Marine Geology, 2011, 279:87-97.
[18] He S L, Kan A T, Tomson M B. Inhibition of calcium carbonate precipitation in NaCl brines from 25 to 90℃[J]. Applied Geochemistry, 1999, 14:17-25.
[19] Al-Mahrooqi S H, Grattoni C A, Moss A K, et al. An investigation of the effect of wettability on NMR characteristics of sandstone rock and fluid systems[J]. Journal of Petroleum Science & Engineering, 2003, 39:389398.
[20] Gavrieli I, Yechieli Y, Halicz L, et al. The sulfur system in anoxic subsurface brines and its implication in brine evolutionary pathways:The Ca-chloride brines in the Dead Sea area[J]. Earth and Planetary Science Letters, 2001, 186:199-213.
[21] Risacher F, Alonso H, Salazar C. Hydrochemistry of two adjacent acid saline lakes in the Andes of northern Chile[J]. Chemical Geology, 2002, 187:39-57.
[22] 于昇松, Green W J. 南极洲万达盐湖水中方解石饱和指数的垂直变化及其控制因素[J]. 湖泊科学, 1992, 4(1):79-84. Yu Shengsong, Green W J. Vertical variation and controlled mechanism of the saturation indices for calcite in Vanda salt lake water, Antarctica[J]. Journal of Lake Sciences, 1992, 4(1):79-84.
[23] Tan H B, Rao W B, Chen J S, et al. Chemical and isotopic approach to groundwater cycle in Western Qaidam Basin, China[J]. Chinese Geographical Science, 2009, 19:357-364.
[24] Abdel Wahed M S, Mohamed E A, Ei-Sayed M I, et al. Hydrogeochemistry processes controlling the water chemistry of a closed saline lake located in Sahara Desert:Lake Qarun, Egypt[J]. Aquat Geochem, 2015, 21:31-57.
[25] 刘兴起, 蔡克勤, 于昇松. 柴达木盆地盐湖形成演化与水体来源关系的地球化学初步模拟:Pitzer模型的应用[J]. 地球化学, 2002, 31(5):501-507. Liu Xingqi, Cai Keqin, Yu Shengsong. Geochemical simulation of formation and evolution of salt lakes and their water sources in Qaidam Basin:Application of Pitzer's model[J]. Geochimica, 2002, 31(5):501-507.
[26] 郑绵平, 向军, 魏新俊, 等. 青藏高原盐湖[M]. 北京:北京科学技术出版社, 1989:92-96. Zheng Mianping, Xiang Jun, Weixinjun. Saline lake of the Qinghai-Tibet plateau[M]. Beijing:Science and Technology Press, 1989:92-96.
[27] 张彭熹, 张保珍, Lowenstein T M, 等. 古代异常钾蒸发岩的成因-以柴达木盆地察尔汗盐湖钾盐的形成为例[M]. 北京:科学出版社, 1993:23-51. Zhang Pengxi, Zhang Baozhen, Lowenstein T M, et al. The causes of ancient abnormal potassium evaporates-take the Charhan salt lake in the Qaidam Basin for example[M]. Beijing:Science Press, 1993:23-51.
[28] 袁见齐, 杨谦, 孙大鹏, 等. 察尔汗盐湖钾盐矿床的形成条件[M]. 北京:地质出版社, 1995:158-166. Yuan Jianqi, Yang Qian, Sun Dapeng, et al. The formation conditions of Charhan potash deposit[M]. Beijing:Geological Publishing House, 1995:158-166.