[1] Simmons F J, Kuo D H W, Xagoraraki I. Removal of human enteric vi-ruses by a full-scale membrane bioreactor during municipal wastewater processing[J]. Water Research, 2011, 45(9):2739-2750.
[2] Cheng R, Li G, Cheng C, et al. Removal of bacteriophage f2 in water by nanoscale zero-valent iron and parameters optimization using re-sponse surface methodology[J]. Chemical Engineering Journal, 2014, 252:150-158.
[3] Stefaniuk M, Oleszczuk P, Ok Y S. Review on nano zerovalent iron (nZ-VI):From synthesis to environmental applications[J]. Chemical Engi-neering Journal, 2016, 287:618-632.
[4] Lee C, Kim J Y, Lee W I, et al. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli[J]. Environmental Science & Technolo-gy, 2008, 42(13):4927-4933.
[5] Auffan M, Achouak W, Rose J, et al. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia co-li[J]. Environmental Science & Technology, 2008, 42(17):6730-6735.
[6] Chen J, Xiu Z, Lowry G V, et al. Effect of natural organic matter on tox-icity and reactivity of nano-scale zero-valent iron[J]. Water Research, 2011, 45(5):1995-2001.
[7] Li Z, Greden K, Alvarez P J J, et al. Adsorbed polymer and NOM lim-its adhesion and toxicity of nano scale zerovalent iron to E. coli[J]. Envi-ronmental Science & Technology, 2010, 44(9):3462-3467.
[8] 王学, 李勇超, 李铁龙, 等. 零价纳米铁对大肠杆菌的毒性效应[J]. 生态毒理学报, 2012, 7(1):49-56. Wang Xue, Li Yongchao, Li Tielong, et al. Toxicity effects of nano-Fe0 on escherichia coli[J]. Asian Journal of Ecotoxicology, 2012, 7(1):49-56.
[9] Diao M, Yao M. Use of zero-valent iron nanoparticles in inactivating microbes[J]. Water Research, 2009, 43(20):5243-5251.
[10] 舒中亚, 汪杰, 黄艺. 零价铁纳米颗粒对硫酸盐还原菌的杀灭作用研究[J]. 环境科学, 2011, 32(10):3040-3044. Shu Zhongya, Wang Jie, Huang Yi. Study of inactivating sulfate re-ducing bacteria with zero-valent iron nanoparticles[J]. Environmental Science, 2011, 32(10):3040-3044.
[11] Kim J Y, Lee C, Love D C, et al. Inactivation of MS2 coliphage by fer-rous ion and zero-valent iron nanoparticles[J]. Environmental Science & Technology, 2011, 45(16):6978-6984.
[12] Auffan M, Rose J, Bottero J Y, et al. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective[J]. Nature Nanotechnology, 2009, 4(10):634-641.
[13] Keenan C R, Sedlak D L. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen[J]. Environ-mental Science & Technology, 2008, 42(4):1262-1267.
[14] 葛兴彬, 王振虹, 郭楚奇, 等. 纳米零价铁的生态毒性效应研究进展[J]. 生态毒理学报, 2015, 10(3):28-37. Ge Xingbin, Wang Zhenhong, Guo Chuqi, et al. Review of the ecotoxic-ity of nanoscale zero-valent iron[J]. Asian Journal of Ecotoxicology, 2015, 10(3):28-37.
[15] Zhan S, Yang Y, Shen Z, et al. Efficient removal of pathogenic bacte-ria and viruses by multifunctional amine-modified magnetic nanoparti-cles[J]. Journal of Hazardous Materials, 2014, 274:115-123.
[16] Chernousova S, Epple M. Silver as antibacterial agent:Ion, nanoparti-cle, and metal[J]. Angewandte Chemie International Edition, 2013, 52(6):1636-1653.
[17] Marambio-Jones C, Hoek E M V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment[J]. Journal of Nanoparticle Research, 2010, 12(5):1531-1551.
[18] Zhang W, Li Y, Niu J, et al. Photogeneration of reactive oxygen spe-cies on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects[J]. Langmuir, 2013, 29(15):4647-4651.
[19] Yang X, Gondikas A P, Marinakos S M, et al. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coat-ing in Caenorhabditis elegans[J]. Environmental Science & Technolo-gy, 2011, 46(2):1119-1127.
[20] Kim J S, Kuk E, Yu K N, et al. Antimicrobial effects of silver nanopar-ticles[J]. Nanomedicine:Nanotechnology, Biology and Medicine, 2007, 3(1):95-101.
[21] Choi O, Hu Z. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria[J]. Environmental Science & Technology, 2008, 42(12):4583-4588.
[22] Pelaez M, Nolan N T, Pillai S C, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications[J]. Applied Catalysis B:Environmental, 2012, 125:331-349.
[23] Du J, Gebicki J M. Proteins are major initial cell targets of hydroxyl free radicals[J]. The International Journal of Biochemistry & Cell Biolo-gy, 2004, 36(11):2334-2343.
[24] 徐瑛, 苏汉桥. 纳米TiO2的制备及其抗菌性能研究[J]. 武汉理工大学学报, 2002, 24(7):1-3. Xu Ying, Su Hanqiao. Study on preparation and antibacterial property of TiO2 nanometer powder[J]. Journal of Wuhan University of Technol-ogy, 2002, 24(7):1-3.
[25] Adams L K, Lyon D Y, Alvarez P J J. Comparative eco-toxicity of na-noscale TiO2, SiO2, and ZnO water suspensions[J]. Water Research, 2006, 40(19):3527-3532.
[26] Kühn K P, Chaberny I F, Massholder K, et al. Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light[J]. Chemosphere, 2003, 53(1):71-77.
[27] Benabbou A K, Derriche Z, Felix C, et al. Photocatalytic inactivation of Escherischia coli:Effect of concentration of TiO2 and microorgan-ism, nature, and intensity of UV irradiation[J]. Applied Catalysis B:Environmental, 2007, 76(3):257-263.
[28] Ibáñez J A, Litter M I, Pizarro R A. Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae:comparative study with other Gram(-) bacteria[J]. Journal of Photochemistry and Photobiology A:Chemis-try, 2003, 157(1):81-85.
[29] Cheng Y W, Chan R C Y, Wong P K. Disinfection of Legionella pneu-mophila by photocatalytic oxidation[J]. Water Research, 2007, 41(4):842-852.
[30] Liga M V, Bryant E L, Colvin V L, et al. Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment[J]. Water Research, 2011, 45(2):535-544.
[31] Gerrity D, Ryu H, Crittenden J, et al. Photocatalytic inactivation of vi-ruses using titanium dioxide nanoparticles and low-pressure UV light[J]. Journal of Environmental Science and Health Part A, 2008, 43(11):1261-1270.
[32] Seery M K, George R, Floris P, et al. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2007, 189(2):258-263.
[33] Dunnill C W H, Aiken Z A, Pratten J, et al. Enhanced photocatalytic activity under visible light in N-doped TiO2 thin films produced by APCVD preparations using t-butylamine as a nitrogen source and their potential for antibacterial films[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2009, 207(2):244-253.
[34] Pathakoti K, Morrow S, Han C, et al. Photoinactivation of Escherichia coli by sulfur-doped and nitrogen-fluorine-codoped TiO2 nanoparti-cles under solar simulated light and visible light irradiation[J]. Envi-ronmental Science & Technology, 2013, 47(17):9988-9996.
[35] Kang S, Pinault M, Pfefferle L D, et al. Single-walled carbon nano-tubes exhibit strong antimicrobial activity[J]. Langmuir, 2007, 23(17):8670-8673.
[36] Nepal D, Balasubramanian S, Simonian A L, et al. Strong antimicrobi-al coatings:single-walled carbon nanotubes armored with biopolymers[J]. Nano Letters, 2008, 8(7):1896-1901.
[37] Arias L R, Yang L. Inactivation of bacterial pathogens by carbon nano-tubes in suspensions[J]. Langmuir, 2009, 25(5):3003-3012.
[38] 黄书杭, 盛力, 隋铭皓. 碳纳米管吸附去除水中大肠杆菌研究[J]. 水处理技术, 2012, 38(2):33-36. Huang Shuhang, Sheng Li, Sui Minghao. The application of CNTs as adsorbent media to concentrate and remove bacillus E. coli from drink-ing water[J]. Technology of Water Treatment, 2012, 38(2):33-36.
[39] Simon-Deckers A, Loo S, Mayne-L'hermite M, et al. Size-, composi-tion-and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria[J]. Environmental science & technology, 2009, 43(21):8423-8429.
[40] Kang S, Herzberg M, Rodrigues D F, et al. Antibacterial effects of car-bon nanotubes:Size does matter![J]. Langmuir, 2008, 24(13):6409-6413.
[41] Su R, Jin Y, Liu Y, et al. Bactericidal activity of Ag-doped multiwalled carbon nanotubes and the effects of extracellular polymeric sub-stances and natural organic matter[J]. Colloids and Surfaces B:Bioin-terfaces, 2013, 104:133-139.
[42] Liu S, Wei L, Hao L, et al. Sharper and faster "nano darts" kill more bacteria:A study of antibacterial activity of individually dispersed pris-tine single-walled carbon nanotube[J]. ACS Nano, 2009, 3(12):3891-3902.
[43] Arias L R, Yang L. Inactivation of bacterial pathogens by carbon nano-tubes in suspensions[J]. Langmuir, 2009, 25(5):3003-3012.
[44] Vecitis C D, Schnoor M H, Rahaman M S, et al. Electrochemical mul-tiwalled carbon nanotube filter for viral and bacterial removal and in-activation[J]. Environmental Science & Technology, 2011, 45(8):3672-3679.
[45] Hemraj-Benny T, Bandosz T J, Wong S S. Effect of ozonolysis on the pore structure, surface chemistry, and bundling of single-walled car-bon nanotubes[J]. Journal of Colloid and Interface Science, 2008, 317(2):375-382.
[46] Upadhyayula V K K, Deng S, Smith G B, et al. Adsorption of bacillus subtilis on single-walled carbon nanotube aggregates, activated carbon and NanoCeramTM[J]. Water Research, 2009, 43(1):148-156.
[47] Deng S, Upadhyayula V K K, Smith G B, et al. Adsorption equilibri-um and kinetics of microorganisms on single-wall carbon nanotubes[J]. Sensors Journal, IEEE, 2008, 8(6):954-962.
[48] Liu T, Tang H Q, Cai X M, et al. A study on bactericidal properties of Ag coated carbon nanotubes[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and At-oms, 2007, 264(2):282-286.
[49] Krishna V, Pumprueg S, Lee S H, et al. Photocatalytic disinfection with titanium dioxide coated multi-wall carbon nanotubes[J]. Process Safety and Environmental Protection, 2005, 83(4):393-397.
[50] Reimer K, Wichelhaus T A, Schäfer V, et al. Antimicrobial effective-ness of povidone-iodine and consequences for new application areas[J]. Dermatology, 2002, 204(Suppl. 1):114-120.
[51] Jiang W, Mashayekhi H, Xing B. Bacterial toxicity comparison be-tween nano-and micro-scaled oxide particles[J]. Environmental Pollu-tion, 2009, 157(5):1619-1625.
[52] Avanzato C P, Follieri J M, Banerjee I A, et al. Biomimetic synthesis and antibacterial characteristics of magnesium oxide-germanium diox-ide nanocomposite powders[J]. Journal of Composite Materials, 2009, 43(8):897-910.
[53] Fabrega J, Fawcett S R, Renshaw J C, et al. Silver nanoparticle im-pact on bacterial growth:effect of pH, concentration, and organic mat-ter[J]. Environmental Science & Technology, 2009, 43(19):7285-7290.
[54] Badawy A M E, Luxton T P, Silva R G, et al. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions[J]. Environ-mental Science & Technology, 2010, 44(4):1260-1266.
[55] Li Y, Zhang W, Niu J, et al. Mechanism of photogenerated reactive ox-ygen species and correlation with the antibacterial properties of engi-neered metal-oxide nanoparticles[J]. Acs Nano, 2012, 6(6):5164-5173.