Exclusive

Removal of pathogenic microorganisms in water with nanomaterials: A review

  • XUE Xingyan ,
  • CHENG Rong ,
  • SHI Lei ,
  • KANG Mi ,
  • ZHU Yan
Expand
  • School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China

Received date: 2016-07-12

  Revised date: 2016-10-08

  Online published: 2016-12-13

Abstract

In recent years, the microbiological safety of water resources has attracted more and more attentions. Traditional disinfection technologies, including the chlorine disinfection and the UV disinfection, are unable to meet the needs of social development. The rapid progress of nanomaterials provides a good opportunity for developing a removal technology of pathogenic microorganisms in water. This paper reviews the removal of pathogenic microorganisms with nanomaterials, including the zero-valent metal nanomaterials such as the nano silver and the nanoscale zero-valent iron, the metal oxide nanomaterials such as the nano titanium dioxide and the carbon-based nanomaterials such as the carbon nanotubes. The removal mechanism of pathogenic microorganisms in water with nanomaterials is analyzed. The major factors affecting the removal of pathogenic microorganisms with nanomaterials are discussed from three aspects, including the nanomaterial characteristics (size, chemical composition, chemical structure, and surface modification), the microorganism (microbial species and initial concentration of microorganism) and the environmental conditions (pH value and dissolved oxygen). The existing problems and challenges in the application of the pathogenic microorganisms removal with nanomaterials are summarized, and the related suggestions are made.

Cite this article

XUE Xingyan , CHENG Rong , SHI Lei , KANG Mi , ZHU Yan . Removal of pathogenic microorganisms in water with nanomaterials: A review[J]. Science & Technology Review, 2016 , 34(22) : 19 -25 . DOI: 10.3981/j.issn.1000-7857.2016.22.001

References

[1] Simmons F J, Kuo D H W, Xagoraraki I. Removal of human enteric vi-ruses by a full-scale membrane bioreactor during municipal wastewater processing[J]. Water Research, 2011, 45(9):2739-2750.
[2] Cheng R, Li G, Cheng C, et al. Removal of bacteriophage f2 in water by nanoscale zero-valent iron and parameters optimization using re-sponse surface methodology[J]. Chemical Engineering Journal, 2014, 252:150-158.
[3] Stefaniuk M, Oleszczuk P, Ok Y S. Review on nano zerovalent iron (nZ-VI):From synthesis to environmental applications[J]. Chemical Engi-neering Journal, 2016, 287:618-632.
[4] Lee C, Kim J Y, Lee W I, et al. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli[J]. Environmental Science & Technolo-gy, 2008, 42(13):4927-4933.
[5] Auffan M, Achouak W, Rose J, et al. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia co-li[J]. Environmental Science & Technology, 2008, 42(17):6730-6735.
[6] Chen J, Xiu Z, Lowry G V, et al. Effect of natural organic matter on tox-icity and reactivity of nano-scale zero-valent iron[J]. Water Research, 2011, 45(5):1995-2001.
[7] Li Z, Greden K, Alvarez P J J, et al. Adsorbed polymer and NOM lim-its adhesion and toxicity of nano scale zerovalent iron to E. coli[J]. Envi-ronmental Science & Technology, 2010, 44(9):3462-3467.
[8] 王学, 李勇超, 李铁龙, 等. 零价纳米铁对大肠杆菌的毒性效应[J]. 生态毒理学报, 2012, 7(1):49-56. Wang Xue, Li Yongchao, Li Tielong, et al. Toxicity effects of nano-Fe0 on escherichia coli[J]. Asian Journal of Ecotoxicology, 2012, 7(1):49-56.
[9] Diao M, Yao M. Use of zero-valent iron nanoparticles in inactivating microbes[J]. Water Research, 2009, 43(20):5243-5251.
[10] 舒中亚, 汪杰, 黄艺. 零价铁纳米颗粒对硫酸盐还原菌的杀灭作用研究[J]. 环境科学, 2011, 32(10):3040-3044. Shu Zhongya, Wang Jie, Huang Yi. Study of inactivating sulfate re-ducing bacteria with zero-valent iron nanoparticles[J]. Environmental Science, 2011, 32(10):3040-3044.
[11] Kim J Y, Lee C, Love D C, et al. Inactivation of MS2 coliphage by fer-rous ion and zero-valent iron nanoparticles[J]. Environmental Science & Technology, 2011, 45(16):6978-6984.
[12] Auffan M, Rose J, Bottero J Y, et al. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective[J]. Nature Nanotechnology, 2009, 4(10):634-641.
[13] Keenan C R, Sedlak D L. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen[J]. Environ-mental Science & Technology, 2008, 42(4):1262-1267.
[14] 葛兴彬, 王振虹, 郭楚奇, 等. 纳米零价铁的生态毒性效应研究进展[J]. 生态毒理学报, 2015, 10(3):28-37. Ge Xingbin, Wang Zhenhong, Guo Chuqi, et al. Review of the ecotoxic-ity of nanoscale zero-valent iron[J]. Asian Journal of Ecotoxicology, 2015, 10(3):28-37.
[15] Zhan S, Yang Y, Shen Z, et al. Efficient removal of pathogenic bacte-ria and viruses by multifunctional amine-modified magnetic nanoparti-cles[J]. Journal of Hazardous Materials, 2014, 274:115-123.
[16] Chernousova S, Epple M. Silver as antibacterial agent:Ion, nanoparti-cle, and metal[J]. Angewandte Chemie International Edition, 2013, 52(6):1636-1653.
[17] Marambio-Jones C, Hoek E M V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment[J]. Journal of Nanoparticle Research, 2010, 12(5):1531-1551.
[18] Zhang W, Li Y, Niu J, et al. Photogeneration of reactive oxygen spe-cies on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects[J]. Langmuir, 2013, 29(15):4647-4651.
[19] Yang X, Gondikas A P, Marinakos S M, et al. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coat-ing in Caenorhabditis elegans[J]. Environmental Science & Technolo-gy, 2011, 46(2):1119-1127.
[20] Kim J S, Kuk E, Yu K N, et al. Antimicrobial effects of silver nanopar-ticles[J]. Nanomedicine:Nanotechnology, Biology and Medicine, 2007, 3(1):95-101.
[21] Choi O, Hu Z. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria[J]. Environmental Science & Technology, 2008, 42(12):4583-4588.
[22] Pelaez M, Nolan N T, Pillai S C, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications[J]. Applied Catalysis B:Environmental, 2012, 125:331-349.
[23] Du J, Gebicki J M. Proteins are major initial cell targets of hydroxyl free radicals[J]. The International Journal of Biochemistry & Cell Biolo-gy, 2004, 36(11):2334-2343.
[24] 徐瑛, 苏汉桥. 纳米TiO2的制备及其抗菌性能研究[J]. 武汉理工大学学报, 2002, 24(7):1-3. Xu Ying, Su Hanqiao. Study on preparation and antibacterial property of TiO2 nanometer powder[J]. Journal of Wuhan University of Technol-ogy, 2002, 24(7):1-3.
[25] Adams L K, Lyon D Y, Alvarez P J J. Comparative eco-toxicity of na-noscale TiO2, SiO2, and ZnO water suspensions[J]. Water Research, 2006, 40(19):3527-3532.
[26] Kühn K P, Chaberny I F, Massholder K, et al. Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light[J]. Chemosphere, 2003, 53(1):71-77.
[27] Benabbou A K, Derriche Z, Felix C, et al. Photocatalytic inactivation of Escherischia coli:Effect of concentration of TiO2 and microorgan-ism, nature, and intensity of UV irradiation[J]. Applied Catalysis B:Environmental, 2007, 76(3):257-263.
[28] Ibáñez J A, Litter M I, Pizarro R A. Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae:comparative study with other Gram(-) bacteria[J]. Journal of Photochemistry and Photobiology A:Chemis-try, 2003, 157(1):81-85.
[29] Cheng Y W, Chan R C Y, Wong P K. Disinfection of Legionella pneu-mophila by photocatalytic oxidation[J]. Water Research, 2007, 41(4):842-852.
[30] Liga M V, Bryant E L, Colvin V L, et al. Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment[J]. Water Research, 2011, 45(2):535-544.
[31] Gerrity D, Ryu H, Crittenden J, et al. Photocatalytic inactivation of vi-ruses using titanium dioxide nanoparticles and low-pressure UV light[J]. Journal of Environmental Science and Health Part A, 2008, 43(11):1261-1270.
[32] Seery M K, George R, Floris P, et al. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2007, 189(2):258-263.
[33] Dunnill C W H, Aiken Z A, Pratten J, et al. Enhanced photocatalytic activity under visible light in N-doped TiO2 thin films produced by APCVD preparations using t-butylamine as a nitrogen source and their potential for antibacterial films[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2009, 207(2):244-253.
[34] Pathakoti K, Morrow S, Han C, et al. Photoinactivation of Escherichia coli by sulfur-doped and nitrogen-fluorine-codoped TiO2 nanoparti-cles under solar simulated light and visible light irradiation[J]. Envi-ronmental Science & Technology, 2013, 47(17):9988-9996.
[35] Kang S, Pinault M, Pfefferle L D, et al. Single-walled carbon nano-tubes exhibit strong antimicrobial activity[J]. Langmuir, 2007, 23(17):8670-8673.
[36] Nepal D, Balasubramanian S, Simonian A L, et al. Strong antimicrobi-al coatings:single-walled carbon nanotubes armored with biopolymers[J]. Nano Letters, 2008, 8(7):1896-1901.
[37] Arias L R, Yang L. Inactivation of bacterial pathogens by carbon nano-tubes in suspensions[J]. Langmuir, 2009, 25(5):3003-3012.
[38] 黄书杭, 盛力, 隋铭皓. 碳纳米管吸附去除水中大肠杆菌研究[J]. 水处理技术, 2012, 38(2):33-36. Huang Shuhang, Sheng Li, Sui Minghao. The application of CNTs as adsorbent media to concentrate and remove bacillus E. coli from drink-ing water[J]. Technology of Water Treatment, 2012, 38(2):33-36.
[39] Simon-Deckers A, Loo S, Mayne-L'hermite M, et al. Size-, composi-tion-and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria[J]. Environmental science & technology, 2009, 43(21):8423-8429.
[40] Kang S, Herzberg M, Rodrigues D F, et al. Antibacterial effects of car-bon nanotubes:Size does matter![J]. Langmuir, 2008, 24(13):6409-6413.
[41] Su R, Jin Y, Liu Y, et al. Bactericidal activity of Ag-doped multiwalled carbon nanotubes and the effects of extracellular polymeric sub-stances and natural organic matter[J]. Colloids and Surfaces B:Bioin-terfaces, 2013, 104:133-139.
[42] Liu S, Wei L, Hao L, et al. Sharper and faster "nano darts" kill more bacteria:A study of antibacterial activity of individually dispersed pris-tine single-walled carbon nanotube[J]. ACS Nano, 2009, 3(12):3891-3902.
[43] Arias L R, Yang L. Inactivation of bacterial pathogens by carbon nano-tubes in suspensions[J]. Langmuir, 2009, 25(5):3003-3012.
[44] Vecitis C D, Schnoor M H, Rahaman M S, et al. Electrochemical mul-tiwalled carbon nanotube filter for viral and bacterial removal and in-activation[J]. Environmental Science & Technology, 2011, 45(8):3672-3679.
[45] Hemraj-Benny T, Bandosz T J, Wong S S. Effect of ozonolysis on the pore structure, surface chemistry, and bundling of single-walled car-bon nanotubes[J]. Journal of Colloid and Interface Science, 2008, 317(2):375-382.
[46] Upadhyayula V K K, Deng S, Smith G B, et al. Adsorption of bacillus subtilis on single-walled carbon nanotube aggregates, activated carbon and NanoCeramTM[J]. Water Research, 2009, 43(1):148-156.
[47] Deng S, Upadhyayula V K K, Smith G B, et al. Adsorption equilibri-um and kinetics of microorganisms on single-wall carbon nanotubes[J]. Sensors Journal, IEEE, 2008, 8(6):954-962.
[48] Liu T, Tang H Q, Cai X M, et al. A study on bactericidal properties of Ag coated carbon nanotubes[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and At-oms, 2007, 264(2):282-286.
[49] Krishna V, Pumprueg S, Lee S H, et al. Photocatalytic disinfection with titanium dioxide coated multi-wall carbon nanotubes[J]. Process Safety and Environmental Protection, 2005, 83(4):393-397.
[50] Reimer K, Wichelhaus T A, Schäfer V, et al. Antimicrobial effective-ness of povidone-iodine and consequences for new application areas[J]. Dermatology, 2002, 204(Suppl. 1):114-120.
[51] Jiang W, Mashayekhi H, Xing B. Bacterial toxicity comparison be-tween nano-and micro-scaled oxide particles[J]. Environmental Pollu-tion, 2009, 157(5):1619-1625.
[52] Avanzato C P, Follieri J M, Banerjee I A, et al. Biomimetic synthesis and antibacterial characteristics of magnesium oxide-germanium diox-ide nanocomposite powders[J]. Journal of Composite Materials, 2009, 43(8):897-910.
[53] Fabrega J, Fawcett S R, Renshaw J C, et al. Silver nanoparticle im-pact on bacterial growth:effect of pH, concentration, and organic mat-ter[J]. Environmental Science & Technology, 2009, 43(19):7285-7290.
[54] Badawy A M E, Luxton T P, Silva R G, et al. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions[J]. Environ-mental Science & Technology, 2010, 44(4):1260-1266.
[55] Li Y, Zhang W, Niu J, et al. Mechanism of photogenerated reactive ox-ygen species and correlation with the antibacterial properties of engi-neered metal-oxide nanoparticles[J]. Acs Nano, 2012, 6(6):5164-5173.
Outlines

/