Exclusive

Methods and application of immobilized microorganism in PVA

  • LIU Yuankun ,
  • MAO Yunhan ,
  • WANG Jianlong
Expand
  • 1. College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China;
    2. Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China;
    3. Datang Environment Industry Group Co., Ltd., Beijing 100097, China

Received date: 2016-04-29

  Revised date: 2016-09-26

  Online published: 2016-12-13

Abstract

The immobilized microorganism technology is advantageous in increasing the concentration of microorganism and improving the efficiency of the wastewater treatment in solutions. This paper reviews the characteristics and the advantages of the immobilized microorganism in the PVA and the methods of the immobilization. The shortages of common methods (the physical crosslinking method and the chemical crosslinking method) are pointed out and relevant optimization techniques are proposed. The applications of the immobilized microorganism of the PVA in the wastewater treatment are discussed, as well as the advantages and disadvantages of the PVA in this area. It is important for the sustainability of the wastewater treatment to develop a simple immobilized microorganism technology with good microbial activity, high mechanical strength, and water-absorbing and swelling behavior.

Cite this article

LIU Yuankun , MAO Yunhan , WANG Jianlong . Methods and application of immobilized microorganism in PVA[J]. Science & Technology Review, 2016 , 34(22) : 56 -61 . DOI: 10.3981/j.issn.1000-7857.2016.22.007

References

[1] Wang J L. Biological immobilization technology and water pollution con-trol[M]. Beijing, Science Press, 2002.
[2] Shi G H, Liu Q S, Zhang X F, et al. Research progress of embedding immobilized microorganism technology in aquaculture water treatment[J]. Technology of Water Treatment, 2015, 40(9):28-32.
[3] Qin S D, Guo J H, Liu Y C, et al. Research progress in immobilized mi-croorganism technology and its application in water treatment[J]. Tech-nology of Water Treatment, 2014, 40(10):6-11.
[4] Lin J P, Jin H P. Experiment on rural domestic wastewater treatment by PVA immobilized microorganism and bamboo charcoal[J]. Guang-zhou Chemical Industry, 2015, 40(19):104-105.
[5] Lozinsky V I, Plieva F M. Poly(vinyl alcohol) cryogels employed as ma-trices for cell immobilization. 3. Overview of recent research and devel-opments[J]. Enzyme and Microbial Technology, 1998, 23(3-4):227-242.
[6] Szczesna A M, Galas E. Bacillus subtilis cells immobilised in PVAcryogels[J]. Biomolecular Engineering, 2001, 17(2):55-63.
[7] Szczesna A M, Antczak T, Bielecki S. Stability of extracellular protein-ase productivity by Bacillus subtilis cells immobilized in PVA-cryogel[J]. Enzyme and Microbial Technology, 2004, 34(2):168-176.
[8] Ting Y P, Sun G. Use of polyvinyl alcohol as a cell immobilization ma-trix for copper biosorption by yeast cells[J]. Journal of Chemical Tech-nology and Biotechnology, 2000, 75(7):541-546.
[9] Shan G B, Xing J M, Liu H Z, et al. Biodesulfurization using Pseudomo-nas delafieldii in magnetic polyvinyl alcohol beads[J]. Letters in Ap-plied Microbiology, 2005, 40(1):30-36.
[10] Wang Y J, Yang X J, Li H Y, et al. Immobilization of Acidithiobacil-lus ferrooxidans with complex of PVA and sodium alginate[J]. Polymer Degradation and Stability, 2006, 91(10):2408-2424.
[11] Wang Y J, Yang X J, Tu W, et al. High-rate ferrous iron oxidation by immobilized Acidithiobacills ferrooxidans with complex of PVA and so-dium alginate[J]. Journal of Microbiology Methods, 2007, 68(2):212-217.
[12] Liu W, Hu Z H, Liu Y F, et al. Preparation of novel immobilized mi-crobe beads and their performance in the treatment of synthetic ani-line wastewater[J]. Acta Scientiae Circumstantiae, 2009, 29(6):1195-1202
[13] Hashimoto S, Furakawa K. Immobilization of activated sludge by PVA-boric acid method[J]. Biotechnology and Bioenginerring, 1987, 30(1):52-59.
[14] Wang J L, Liu P, Qian Y. Biodegradation of phthalic acid esters by im-mobilized microbial cells[J]. Environment International, 1997, 23(6):775-782.
[15] Park E J, Seo J K, Kim M R, et al. Salinity acclimation of immobi-lized freshwater denitrifier[J]. Aquacultural Engineering, 2001, 24(3):169-180.
[16] Seo J K, Jung I H, Kim M R, et al. Nitrification performance of nitrifi-ers immobilized in PVA(polyvinyl alcohol) for a marine recirculating aquarium system[J]. Aquacultural Engineering, 2001, 24(3):181-194.
[17] Quan X C, Shi H C, Wang J L, et al. Biodegradation of 2,4-dichloro-phenol in sequencing batch reactors augmented with immobilized mixed culture[J]. Chemosphere, 2003, 50(8):1069-1074.
[18] Quan X C, Shi H C, Zhang Y M, et al. Biodegradation of 2,4-dichloro-phenol in an air-lift honeycomb-like ceramic reactor[J]. Process Bio-chemistry, 2003, 38(11):1545-1551.
[19] He F, Hu W R, Li Y Z. Investigation of isolation and immobilization of a microbial consortium for decoloring of azo dye 4BS[J]. Water Re-search, 2004, 38(16):3596-3604.
[20] Yang J X, He M Y, Wang G J. Removal of toxic chromate using free and immobilized Cr(VI)-reducing bacterial cells of Intrasporangium sp Q5-1[J]. World Journal of Microbiology and Biotechnology, 2009, 25(9):1579-1587.
[21] Chen K C, Chen J J, Houng J Y. Improvement of nitrogen-removal ef-ficiency using immobilized microorganisms with oxidation-reduction potential monitoring[J]. Journal of Industrial Microbiology and Biotech-nology, 2000, 25(5):229-234.
[22] Chen K C, Wu J Y, Huang C C, et al. Decolorization of azo dye using PVA-immobilized microorganisms[J]. Journal of Biotechnology, 2003, 101(3):241-252.
[23] Sasaki H, Nonaka J, Sasaki T, et al. Ammonia removal from livestock wastewater by ammonia-assimilating microorganisms immobilized in polyvinyl alcohol[J]. Journal of Industrial Microbiology and Biotechnol-ogy, 2007, 34(2):105-110.
[24] Kao W C, Wu J Y, Chang C C, et al. Cadmium biosorption by polyvi-nyl alcohol immobilized recombinant Escherichia coli[J]. Journal of Hazardous Materials, 2009, 169(1-3):651-658.
[25] Wang J L, Zhang Y X, Wang Y Y, et al. An innovative reactor-type biosensor for BOD rapid measurement[J]. Biosensors and Bioelectron-ics, 2010, 25(7):1705-1709.
[26] Idris A, Zain N A M, Suhaimi M S. Immobilization of baker's yeast in-vertase in PVA-alginate matrix using innovative immobilization tech-nique[J]. Process Biochemistry, 2008, 43(4):331-338.
[27] Zain N A M, Suhaimi M S, Idris A. Hydrolysis of liquid pineapple waste by invertase immobilized in PVA-alginate matrix[J]. Biochemi-cal Engineering Journal, 2010, 50(3):83-89.
[28] Zain N A M, Suhaimi M S, Idris A. Development and modification of PVA-alginate as a suitable immobilization matrix[J]. Process Biochem-istry, 2011, 46(11):2122-2129.
[29] Takei T, Ikeda K, Ijima H, et al. Fabrication of poly(vinyl alcohol) hy-drogel beads crosslinked using sodium sulfate for microorganism im-mobilization[J]. Process Biochemistry, 2011, 46(2):566-571.
[30] Hsieh Y L, Tseng S K, Chang Y J. Nitrification using polyvinyl alco-hol-immobilized nitrifying biofilm on an O2-enriching membrane[J]. Biotechnology Letters, 2002, 24(4):315-319.
[31] Hsia T H, Feng Y J, Ho C M, et al. PVA-alginate immobilized cells for anaerobic ammonium oxidation (anammox) process[J]. Joural of In-dustrial Microbiology and Biotechnology, 2008, 35(7):721-727.
[32] Chang C C, Tseng S K. Immobilization of Alcaligenes eutrophus using PVA crosslinked with sodium nitrate[J]. Biotechnology Techniques, 1998, 12(12):865-868.
[33] Zhang L S, Wu W Z, Wang J L. Immobilization of activated sludge us-ing improved polyvinyl alcohol (PVA) gel[J]. Journal of Environment Science-China, 2007, 19(11):1293-1297.
[34] Long Z E, Huang Y H, Cai Z L, et al. Immobilization of Acidithiobacil-lus ferrooxidans by a PVA-boric acid method for ferrous sulphate oxi-dation[J]. Process Biochemistry, 2004, 39(12):2129-2133.
[35] Dave R, Madamwar D. Esterification in organic solvents by lipase im-mobilized in polymer of PVA alginate boric acid[J]. Process Biochem-istry, 2006, 41(4):951-955.
[36] Poopal A C, Laxman R S. Hexavalent chromate reduction by immobi-lized Streptomyces griseus[J]. Biotechnology Letters, 2008, 30(6):1005-1010.
[37] Li H Z. Study on optimization and application of the BOD biosensor[D]. Beijing:Tsinghua University 2002.
[38] Jeon C, Park J Y, Yoo Y J. Novel immobilization of alginic acid for heavy metal removal[J]. Biochemical Engineering Journal, 2002, 11(2-3):159-166.
[39] Chang I S, Kim C I, Nam B U. The influence of poly-vinyl-alcohol (PVA) characteristics on the physical stability of encapsulated immobi-lization media for advanced wastewater treatment[J]. Process Biochem-istry, 2005, 40(9):3050-3054.
[40] Liu S W, Li H. Mechanical Strength Improvement of Immobil ized Mi-crobial Cell Granule[J]. Journal of Microbiology, 2005, 25(4):32-34.
[41] Mitsumata T, Hasegawa C, Kawada H, et al. Swelling and viscoelastic properties of poly(vinyl alcohol) physical gels synthesized using sodi-um silicate[J]. Reactive and Functional Polymers, 2008, 68(1):133-140.
[42] An M, Lo K V. Activated sludge immobilization using the PVA-algi-nate-borate method[J]. Journal of Environmental Science and Health A, 2001, 36(1):101-115.
[43] Ariga O, Takagi H, Nishizawa H, et al. Immobilization of microorgan-isms with PVA hardened by iterative freezing and thawing[J]. Journal of Fermentation Technology, 1987, 65(6):651-658.
[44] Ichijo H, Nagasawa I, Yamauchi A. Immobilization of biocatalysts with poly(vinyl alcohol) supports[J]. Journal of Biotechnology, 1990, 14(2):169-178.
[45] Chen K C, Chen S J, Houng J Y. Improvement of gas permeability of denitrifying PVA gel beads[J]. Enzyme and Microbial Technology, 1996, 18(7):502-506.
[46] Muftah H E N, Shaheen A A M, Souzan M. Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel[J]. Journal of Hazardous Materials, 2009, 164(2-3):720-725.
[47] Muftah H E N, Sulaiman A Z, Souzan M. Continuous biodegradation of phenol in a spouted bed bioreactor (SBBR)[J]. Biochemical Engi-neering Journal, 2010, 160(2):565-570.
[48] Wang J L, Quan X C, Han L P, et al. Microbial degradation of quino-line by immobilized cells of Burkholderia pickettii[J]. Water Research, 2002, 36(9):2288-2296.
[49] Kim J W, Rainina E I, Mulbry W W, et al. Enhanced-rate biodegrada-tion of organophosphate neurotoxins by immobilized nongrowing bacte-ria[J]. Biotechnology Progress, 2002, 18(3):429-436.
[50] Li T. Preparation of polyvinyl alcohol composite carriers for the Immo-bilization of effective microorganisms[D]. Guangzhou:South China Uni-versity of Technology Guangzhou, 2013.
[51] Wang Y, Tian Y, Han B, et al. Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12[J]. Journal of Environmen-tal Sciences, 2007, 19(2):222-225.
[52] Rostron W M, Stuckey D C, Yong A A. Nitrification of high strength ammonia wastewaters:Comparative study of immobilisation media[J]. Water Research, 2001, 35(5):1169-1178.
[53] Cao G M, Zhao Q X, Sun XB, et al. Characterization of nitrifying and denitrifying bacteria coimmobilized in PVA and kinetics model of bio-logical nitrogen removal by coimmobilized cells[J]. Enzyme and Micro-bial Technology, 2002, 30(1):49-55.
[54] Khoo K M, Ting Y P. Biosorption of gold by immobilized fungal bio-mass[J]. Biochemical Engineering Journal, 2001, 8(1):51-59.
[55] Sheng P X, Wee K H, Ting Y P, et al. Biosorption of copper by immol-ized marine algal biomass[J]. Biochemical Engineering Journal, 2008, 136(2-3):156-163.
[56] Pattanapipitpaisal P, Brown N L, Macaskie L E. Chromate reduction by microbacterium liquefaciens immobilized in polyvinyl alcohol[J]. Biotechnology Letters, 2001, 23(1):61-65.
[57] Poopal A C, Laxman R S. Chromate reduction by PVA-alginate immo-bilized Streptomyces griseus in a bioreactor[J]. Biotechnology Letters, 2009, 31(1):1171-1176.
Outlines

/