[1] 陆维忠, 程顺和, 王裕中. 小麦赤霉病研究[M]. 北京:科学出版社, 2001. Lu Weizhong, Cheng Shunhe, Wang Yuzhong. Research on wheat scab[M]. Beijing:Science Publisher, 2001.
[2] Bai G H, Shaner G. Management and resistance in wheat and barley to Fusarium head blight[J]. Annual Review of Phytopathology, 2004, 42(1):135-161.
[3] Placinta C M, D'Mello J P F, Macdonald A M C. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotox-ins[J]. Animal Feed Science and Technology, 1999, 78(1/2):21-37.
[4] Pestka J J. Deoxynivalenol:Mechanisms of action, human exposure, and toxicological relevance[J]. Archives of Toxicology, 2010, 84(9):663-679.
[5] Zhang J B, Wang J H, Gong A D, et al. Natural occurrence of Fusari-um head blight, mycotoxins, and mycotoxin-producing strains of Fusari-um in commercial fields of wheat in Hubei[J]. Plant Pathology, 2013, 62(1):92-102.
[6] 程顺和, 张勇, 别同德, 等. 中国小麦赤霉病的危害及抗性遗传改良[J]. 江苏农业学报, 2012, 28(5):938-942. Cheng Shunhe, Zhang Yong, Bie Tongde, et al. Damage of wheat Fusari-um head blight (FHB) epidemics and genetic improvement of wheat for scab resistance in China[J]. Jiangsu Journal of Agricultural Science, 2012, 28(5):938-942.
[7] McMullen M, Jones R, Gallenberg D. Scab of wheat and barley:A reemerging disease of devastating impact[J]. Plant Disease, 1997, 81(12):1340-1348.
[8] Goswami R S, Kistler H C. Heading for disaster:Fusarium gra-minearum on cereal crops[J]. Molecular Plant Pathology, 2004, 5(6):515-525.
[9] Windels C E. Economic and social impacts of Fusarium head blight:Changing farms and rural communities in the northern great plains[J]. Phytopathology, 2000, 90(1):17-21.
[10] Xu X M, Nicholson P. Community ecology of fungal pathogens causing wheat head blight[J]. Annual Review of Phytopathology, 2009, 47(1):83-103.
[11] 刘大钧. 小麦抗赤霉病育种--一个世界性难题[C]//21世纪小麦遗传育种展望--小麦遗传育种国际学术讨论会文集. 北京:中国农业科技出版社, 2001:4-12. Liu Dajun. Breeding wheat for scab resistance:A worldwide hard nut to crack[C]//Proceedings of International Conference on Wheat Genet-ics and Breeding-Perspectives of the 21st Century for Wheat Genetics and Breeding. Beijing:Agriculture Publisher, 2001:4-12.
[12] Liu X, Yin Y, Wu J, et al. Identification and characterization of car-bendazim-resistant isolates of Gibberella zeae[J]. Plant Disease, 2010, 94(9):1137-1142.
[13] Yuan S K, Zhou M G. A major gene for resistance to carbendazim, in field isolates of Gibberella zeae[J]. Canadian Journal of Plant Patholo-gy, 2005, 27(1):58-63.
[14] Liao Y C, Li H P, Yao M J, et al. Plantibodies:A novel strategy to cre-ate pathogen-resistant plants[J]. Biotechnology and Genetic Engineer-ing Reviews, 2006, 23:253-271.
[15] Voss A, Niersbach M, Hirsch H J, et al. Reduced virus infectivity in N. tabacum secreting a TMV-specific full size antibody[J]. Molecular Breeding, 1995, 1(1):39-51.
[16] Hiatt A, Cafferkey R, Bowdish K. Antibodies produced in plants[J]. Na-ture, 1990, 344:469-70.
[17] Safarnejad M R, Jouzani G S, Tabatabaie M, et al. Antibody-mediated resistance against plant pathogens[J]. Biotechnology Advances, 2011, 29(6):961-971.
[18] McCafferty J, Griffiths A D, Winter G, et al. Phage antibodies:Fila-mentous phage displaying antibody variable domains[J]. Nature, 1990, 348:552-554.
[19] Peschen D, Li H P, Fischer R, et al. Fusion proteins comprising a Fu-sarium-specific antibody linked to anti-fungal peptides protect plants against fungal pathogens[J]. Nature Biotechnology, 2004, 22(6):732-738.
[20] Hu Z Q, Li H P, Zhang J B, et al. A phage-displayed chicken singlechain antibody fused to alkaline phosphatase detects Fusarium patho-gens and their presence in cereal grains[J]. Analytica Chimica Acta, 2013, 764:84-92.
[21] Xue S, Li H P, Zhang J B, et al. Chicken single-chain antibody fused to alkaline phosphatase detects Aspergillus pathogens and their pres-ence in natural samples by direct sandwich enzyme-linked immuno-sorbent assay[J]. Analytical Chemistry, 2013, 85(22):10992-10999.
[22] Tavladoraki P, Benvenuto E, Trinca S, et al. Transgenic plants express-ing a functional single-chain Fv antibody are specifically protected from virus attack[J]. Nature, 1993, 366:469-472.
[23] Galeffi P, Lombardi A, Donato M D, et al. Expression of single-chain antibodies in transgenic plants[J]. Vaccine, 2005, 23(15):823-827.
[24] Zimmermann S, Schillberg S, Liao Y C, et al. Intracellular expression of TMV-specific single chain Fv fragments leads to improved virus re-sistance in Nicotiana tabacum[J]. Molecular Breeding, 1998, 4:369-379.
[25] Jobling S A, Jarman C, Holmberg, N, et al. Immunomodulation of en-zyme function in plants by single-domain antibody fragments[J]. Na-ture Biotechnology, 2003, 21(1):77-80.
[26] Ma J K C, Drake P M W, Christou P. The production of recombinant pharmaceutical proteins in plants[J]. Nature Review Genetics, 2003, 4:794-805.
[27] Boonrod K, Galetzka D, Nagy P D, et al. Single-chain antibodies against a plant viral RNA-dependent RNA polymerase confer virus re-sistance[J]. Nature Biotechnology, 2004, 22(7):856-862.
[28] Hu Z Q, Li H P, Zhang J B, et al. Antibody-mediated prevention of Fusarium mycotoxins in the field[J]. International Journal of Molecular Sciences, 2008, 9:1915-1926.
[29] Nölke G, Cobanov P, Uhde-Holzem K, et al. Grapevine fanleaf virus (GFLV)-specific antibodies confer GFLV and Arabis mosaic virus (Ar-MV) resistance in Nicotiana benthamiana[J]. Molecular Plant Patholo-gy, 2009, 10(1):41-49.
[30] Liao Y C, Li H P, Zhang J B, et al. Antibody-mediated protection of plants against Fusarium pathogens[C]. McIntosh R, ed. Proceedings Borlaug Global Rust Initiative 2012 Technical Workshop. Beijing:Bor-laug Global Rust Initiative, 2012:88-101.
[31] 瞿波. 中国禾谷镰刀菌(Fusarium graminearum)的遗传多样性及其与尼泊尔、欧美菌系的比较[D]. 武汉:华中农业大学, 2003. Qu Bo. Genetic diversity of Fusarium graminearum in China and its comparison with the isolates from Nepal, Europe and USA[D]. Wuhan:Huazhong Agricultural University, 2003.
[32] Li H P, Wu A B, Zhao C S, et al. Development of a generic PCR de-tection of deoxynivalenol-and nivalenol-chemotypes of Fusarium gra-minearum[J]. FEMS Microbiology Letters, 2005, 243(2):505-511.
[33] Wu A B, Li H P, Zhao C S, et al. Comparative pathogenicity of Fusari-um graminearum from China revealed by wheat coleoptile and floret inoculations[J]. Mycopathologia, 2005, 160(1):75-83.
[34] Zhang J B, Li H P, Dang F J, et al. Determination of the trichothe-cene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from China[J]. Mycological Research, 2007, 111:967-975.
[35] Qu B, Li H P, Zhang J B, et al. Geographical distribution and genetic diversity of the Fusarium graminearum and F. asiaticum on wheat spikes throughout China[J]. Plant Pathology, 2008, 57:15-24.
[36] Qu B, Li H P, Zhang J B, et al. Comparison of genetic diversity and pathogenicity of Fusarium head blight pathogens from China and Eu-rope revealed by SSCP and seedling assays on wheat[J]. Plant Patholo-gy, 2008, 57(4):642-651.
[37] Wang J H, Ndoye M, Zhang J B, et al. Population structure and genet-ic diversity of the Fusarium graminearum species complex[J]. Toxins, 2011, 3:1020-1037.
[38] Yajima W, Verma S S, Shah S, et al. Expression of anti-sclerotinia scFv in transgenic Brassica napus enhances tolerance against stem rot[J]. New Biotechnology, 2010, 27:816-821.
[39] Brar H K, Bhattacharyya M K. Expression of a single-chain variable fragment antibody against a Fusarium virguliforme toxin peptide en-hances tolerance to sudden death syndrome in transgenic soybean plants[J]. Molecular Plant-Microbe Interaction, 2012, 25:817-824.
[40] Liu J L, Hu Z Q, Xing S, et al. Attainment of 15-fold higher affinity of a Fusarium-specific single-chain antibody by directed molecular evolution coupled to phage display[J]. Molecular Biotechnology, 2012, 52(2):111-122.
[41] 刘锦龙. 高亲和力镰刀菌特异性单链抗体的获得和应用[D]. 武汉:华中农业大学, 2012. Liu Jinlong. Attainment and application of a high affinity Fusariumspecific single-chain antibody[D]. Wuhan:Huazhong Agricultural Uni-versity, 2012.
[42] Li H P, Zhang J B, Shi R P, et al. Engineering Fusarium head blight resistance in wheat by expression of a fusion protein containing a Fu-sarium-specific antibody and an antifungal peptide[J]. Molecular Plant-Microbe Interaction, 2008, 21(9):1242-1248.
[43] Cheng W, Li H P, Zhang J B, et al. Tissue-specific and pathogen-in-ducible expression of a fusion protein containing a Fusarium-specific antibody and a fungal chitinase protects wheat against Fusarium patho-gens and mycotoxins[J]. Plant Biotechnology Journal, 2015, 13(5):664-674.
[44] Abebe T, Skadsen R W, Kaeppler H F. A proximal upstream se-quence controls tissue-specific expression of Lem2, a salicylate-in-ducible barley lectin-like gene[J]. Planta, 2005, 221(2):170-183.
[45] Abebe T, Skadsen R, Patel M, et al. The Lem2 gene promoter of bar-ley directs cell-and development-specific expression of gfp in trans-genic plants[J]. Plant Biotechnology Journal, 2006, 4(1):35-44.
[46] Hensel G, Himmelbach A, Chen W, et al. Transgene expression sys-tems in the Triticeae cereals[J]. Journal of Plant Physiology, 2011, 168(1):30-44.
[47] Snijders C H A, Krechting C F. Inhibition of deoxynivalenol transloca-tion and fungal colonization in Fusarium head blight resistant wheat[J]. Canadian Journal of Botany, 1992, 70(8):1570-1576.
[48] Ndoye M, Zhang J B, Wang J H, et al. Nivalenol and 15-acetylde-oxynivalenol chemotypes of Fusarium graminearum clade species are prevalent on maize throughout China[J]. Journal of Phytopathology, 2012, 160(10):519-524.
[49] Agrios G N. Plant Pathology[M]. 4th ed. San Diego:Academic Press, 1997.
[50] Song X S, Xing S, Li H P, et al. An antibody that confers plant dis-ease resistance targets a membrane-bound glyoxal oxidase in Fusarium[J]. New Phytologist, 2016, 210(3):997-1010.
[51] Christensen J H, Baucher M, O'Connell A P, et al. Control of lignin biosynthesis[M]. Jain S M, Minocha S C, ed. Molecular Biology of Woody Plants. Dordrecht, the Netherlands:Kluwer, 2000:227-267.
[52] Obruca S, Marova I, Matouskova P, et al. Production of lignocellulosedegrading enzymes employing Fusarium solani F-552[J]. Folia Micro-biologica, 2012, 57(3):221-227.
[53] Eudes A, Liang Y, Mitra P, et al. Lignin bioengineering[J]. Current Opinion in Biotechnology, 2014, 26:189-198.
[54] Cohen B A, Amsellem Z, Lev-Yadun S. Infection of tubercles of the parasitic weed Orobanche aegyptiaca by mycoherbicidal Fusarium spe-cies[J]. Annals of Botany, 2002, 90:567-578.
[55] Walter S, Nicholson P, Doohan F M. Action and reaction of host and pathogen during Fusarium head blight disease[J]. New Phytologist, 2010, 185(1):54-66.
[56] Kang Z, Buchenauer H. Ultrastructural and immunocytochemical in-vestigation of pathogen development and host responses in resistant and susceptible wheat spikes infected by Fusarium culmorum[J]. Physiological and Molecular Plant Pathology, 2000, 57:255-268.
[57] Kang Z, Buchenauer H, Huang L, et al. Cytological and immunocyto-chemical studies on responses of wheat spikes of the resistant Chi-nese cv. Sumai3 and the susceptible cv. Xiaoyan 22 to infection by Fusarium graminearum[J]. European Journal of Plant Pathology, 2008, 120(4):383-396.
[58] Desjardins A E, Proctor R H, Bai G H, et al. Reduced virulence of trichothecene-nonproducing mutants of Gibberella zeae in wheat field tests[J]. Molecular Plant-Microbe Interaction, 1996, 9(9):775-781.
[59] Li X, Zhang J B, Song B, et al. Resistance to Fusarium head blight and seedling blight in wheat is associated with activation of a cyto-chrome P450 gene[J]. Phytopathology, 2010, 100:183-191.