Spescial Issues

Key mechanical problems and numerical methods of hydraulic fracture in shale

  • LI Mingyao ,
  • HE Jiayuan ,
  • SU Yewang
Expand
  • 1. State Key Laboratory of Nonlinear Mechanics;Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
    2. Research Institute of Petroleum Exploration and Development, China Petroleum Exploration and Production Research Institute, SINOPEC, Beijing 100083, China

Received date: 2016-01-06

  Revised date: 2016-08-22

  Online published: 2016-12-28

Abstract

This paper provides an overview of the key mechanical problems of hydraulic fracturing process including rock deformation due to the fluid pressure on crack surfaces, crack initiation and propagation, fluid flow within cracks and their couplings. The fundamentals of the numerical methods for hydraulic fracturing are reviewed with their progress and development trend, for example, finite element method, discrete element method, boundary element method and other related numerical methods. These methods are analyzed and compared in terms of advantages and applicability.

Cite this article

LI Mingyao , HE Jiayuan , SU Yewang . Key mechanical problems and numerical methods of hydraulic fracture in shale[J]. Science & Technology Review, 2016 , 34(23) : 32 -42 . DOI: 10.3981/j.issn.1000-7857.2016.23.003

References

[1] Hubbert M K, Willis D G. Mechanics of hydraulic fracturing[J]. Transactions of Society of Petroleum Engineers of AIME, 1957(210):153-168.
[2] 庄茁, 柳占立, 王涛, 等. 页岩水力压裂的关键力学问题[J]. 科学通报, 2016, 61(1):72-81. Zhuang Zhuo, Liu Zhanli, Wang Tao, et al. The key mechanical problems on hydraulic fracture in shale[J]. Chinese Science Bulletin, 2016, 61(1):72-81.
[3] 庄茁, 柳占立, 王永亮. 页岩油气高效开发中的基础理论与关键力学问题[J]. 力学季刊, 2015, 36(1):11-25. Zhuang Zhuo, Liu Zhanli, Wang Yongliang. Fundamental theory and key mechanical problems of shale oil gas effective extraction[J]. Chinese Quarterly of Mechanics, 2015, 36(1):11-25.
[4] 姚军, 孙海, 黄朝琴, 等. 页岩气藏开发中的关键力学问题[J]. 中国科学:物理学力学天文学, 2013, 43(12):1527-1547. Yao Jun, Sun Hai, Huang Zhaoqin, et al. Key mechanical problems in the development of shale gas reservoirs[J]. Science China:Physics, Mechanics& Astronomy, 2013, 43(12):1527-1547.
[5] Yuan B, Wood D A, Yu W. Stimulation and hydraulic fracturing technology in natural gas reservoirs:Theory and case studies (2012-2015)[J]. Journal of Natural Gas Science and Engineering, 2015, 26(3):1414-1421.
[6] Wu R. Some fundamental mechanics of hydarulic fracturing[D]. Atlanta:School of Civil and Environmental Engineering, Georgia Institute of Technology, 2006.
[7] Ching H. Yew, Xiaowei W. Mechanics of hydraulic fracturing[M]. 2nd. Houston:Gulf Professional Publishing, 2014.
[8] Brady B, Elbel J, Mack M, et al. Cracking rock:Progress in fracture treatment design[J]. Oilfield Review 1992, 4(4):4-17.
[9] Li Q, Xing H, Liu J, et al. A review on hydraulic fracturing of unconventional reservoir[J]. Petroleum, 2015, 1(1):8-15.
[10] Kovalyshen Y. Fluid-driven fracture in poroelastic medium[D]. Minnesota:Faculty of the Graduate School, University of Minnesota, 2010.
[11] Sone H. Mechanical properties of shale gas reservoir rocks, and its relation to the in-situ stress variation observed in shale gas reservoirs[D]. Palo Alto:Stanford University, 2012.
[12] Taleghani A D, Gonzalez M, Shojaei A. Overview of numerical models for interactions between hydraulic fractures and natural fractures:Challenges and limitations[J]. Computers and Geotechnics, 2016(71):361-368.
[13] Tang C A, Tham L G, Lee P K K, et al. Coupled analysis of flow, stress and damage (FSD) in rock failure[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(4):477-489.
[14] Adachi J, Siebrits E, Peirce A, et al. Computer simulation of hydraulic fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5):739-757.
[15] Hofmann H. Development of enhanced geothermal systems (EGS) in Northern Alberta[D]. Edmonton:University of Alberta, 2015.
[16] Min K S. Numerical modeling of hydraulic fracture propagation using thermo-hydro-mechanical analysis with brittle damage model by finite element method[D]. College Station:Department of Petroleum Engineering, Texas A&M University, 2013.
[17] Carter B J, Desroches J, Ingraffea A R, et al. Simulating fully 3D hydraulic fracturing[M]. Manhattan:John Viley and Sons, 2000:525-557.
[18] Ahn C H, Dilmore R, Wang J Y. Development of innovative and efficient hydraulic fracturing numerical simulation model and parametric studies in unconventional naturally fractured reservoirs[J]. Journal of Unconventional Oil and Gas Resources, 2014(8):25-45.
[19] Carrier B, Granet S. Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model[J]. Engineering Fracture Mechanics, 2012(79):312-328.
[20] Chen Z, Bunger A P, Zhang X, et al. Cohesive zone finite elementbased modeling of hydraulic fractures[J]. Acta Mechanica Solida Sinica, 2009, 22(5):443-452.
[21] Therrien R, Sudicky E A. Three-dimensional analysis of variably-saturated flow and solute transport in discretely-fractured porous media[J]. Journal of Contaminant Hydrology, 1996, 23(1-2):1-44.
[22] Devloo P R B, Fernandes P D, Gomes S M, et al. A finite element model for three dimensional hydraulic fracturing[J]. Mathematics and Computers in Simulation, 2006, 73(1-4):142-155.
[23] Hunsweck M J, Shen Y, Lew A J. A finite element approach to the simulation of hydraulic fractures with lag[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(9):993-1015.
[24] Ouyang S, Carey G F, Yew C H. An adaptive finite element scheme for hydraulic fracturing with proppant transport[J]. International Journal for Numerical Methods in Fluids, 1997, 24(7):645-670.
[25] Wang S Y, Sun L, Au A S K, et al. 2D-numerical analysis of hydraulic fracturing in heterogeneous geo-materials[J]. Construction and Building Materials, 2009, 23(6):2196-2206.
[26] Chen Z. Finite element modelling of viscosity-dominated hydraulic fractures[J]. Journal of Petroleum Science and Engineering, 2012(88):136-144.
[27] Wangen M. Finite element modeling of hydraulic fracturing in 3D[J]. Computational Geosciences, 2013, 17(4):647-659.
[28] Taleghani A. Analysis of hydraulic fracture propagation in fractured reservoirs:An improved model for the interaction between induced and natural fractures[D]. Austin:Department of Petroleum and Geosystems Engineering, University of Texas at Austin, 2009.
[29] Taleghani A, Olson J E. Numerical modeling of multistranded-hydraulic-fracture propagation:Accounting for the interaction between induced and natural fractures[J]. Society of Petroleum Engineers, 2011(16):575-581.
[30] Taleghani A D, Olson J E. Analysis of multistranded hydraulic fracture propagation:An improved model for the interaction between induced and natural fractures[C]//Annual Technical Conference and Exhibition. New Orleans, Louisiana:Society of Petroleum Engineers, 2009.
[31] Lecampion B. An extended finite element method for hydraulic fracture problems[J]. Communications in Numerical Methods in Engineering, 2009, 25(2):121-133.
[32] Mohammadnejad T, Khoei A R. An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model[J]. Finite Elements in Analysis and Design, 2013(73):77-95.
[33] Gordeliy E, Peirce A. Coupling schemes for modeling hydraulic fracture propagation using the XFEM[J]. Computer Methods in Applied Mechanics and Engineering, 2013(253):305-322.
[34] Salimzadeh S, Khalili N. A three-phase XFEM model for hydraulic fracturing with cohesive crack propagation[J]. Computers and Geotechnics, 2015(69):82-92.
[35] Wang H. Numerical modeling of non-planar hydraulic fracture propagation in brittle and ductile rocks using XFEM with cohesive zone method[J]. Journal of Petroleum Science and Engineering, 2015(135):127-140.
[36] Hossain M M, Rahman M K. Numerical simulation of complex fracture growth during tight reservoir stimulation by hydraulic fracturing[J]. Journal of Petroleum Science and Engineering, 2008, 60(2):86-104.
[37] Pecher R. Boundary element simulation of petroleum reservoirs with hydraulically fractured wells[D]. Galgary:Department of Chemical and Petroleum Engineering, University of Calgary, 1999.
[38] Lecampion B, Detournay E. An implicit algorithm for the propagation of a hydraulic fracture with a fluid lag[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(49):4863-4880.
[39] Sheibani F. Solving three-dimensional problems in natural and hydraulic fracture development:Insight from displacement discontinuity modeling[D]. Austin:Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, 2013.
[40] Behnia M, Goshtasbi K, Fatehi Marji M, et al. On the crack propagation modeling of hydraulic fracturing by a hybridized displacement discontinuity/boundary collocation method[J]. Journal of Mining and Environment, 2011, 2(1):1-16.
[41] Al-Busaidi A, Hazzard J F, Young R P. Distinct element modeling of hydraulically fractured Lac du Bonnet granite[J]. Journal of Geophysical Research:Solid Earth, 2005, 110(B06302).
[42] Zhang F, Damjanac B, Huang H. Coupled discrete element modeling of fluid injection into dense granular media[J]. Journal of Geophysical Research:Solid Earth, 2013, 118(6):2703-2722.
[43] Nikolic M, Ibrahimbegovic A, Miscevic P. Discrete element model for the analysis of fluid-saturated fractured poro-plastic medium based on sharp crack representation with embedded strong discontinuities[J]. Computer Methods in Applied Mechanics and Engineering, 2016(298):407-427.
[44] Deng S, Li H, Ma G, et al. Simulation of shale-proppant interaction in hydraulic fracturing by the discrete element method[J]. International Journal of Rock Mechanics and Mining Sciences, 2014(70):219-228.
[45] Shimizu H, Murata S, Ishida T. The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(5):712-727.
[46] Ingrid T. Micro-mechanical aspects of hydraulic fracture propagation and proppant flow and transport for stimulation of enhanced geothermal systems a discrete element study[D]. Golden:Department of Civil and Environmental Engineering, Colorado School of Mines, 2007.
[47] Zeeb C, Konietzky H. Simulating the hydraulic stimulation of multiple fractures in an anisotropic stress field applying the discrete element method[J]. Energy Procedia, 2015, 76:264-272.
[48] McClure M W, Horne R N. Discrete fracture network modeling of hydraulic stimulation:coupling flow and geomechanics[M]. Berlin:Springer Science & Business Media, 2013.
[49] Damjanac B, Cundall P. Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs[J]. Computers and Geotechnics, 2016(71):283-294.
[50] Fu P, Johnson S M, Hao Y, et al. Fully coupled geomechanics and discrete flow network modeling of hydraulic fracturing for geothermal applications[C]//Thirty-Sixth Workshop on Geothermal Reservoir Engineering, 2011. Palo Alto:Stanford University, 2011.
[51] Fu P, Johnson S M, Carrigan C R. An explicitly coupled hydro-geomechanical model for simulating hydraulic fracturing in arbitrary discrete fracture networks[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(14):2278-2300.
[52] Yaghoubi A, Zoback M D. Hydraulic fracturing modeling using a discrete fracture network in the barnett shale[C]//American Geophysical Union, Fall Meeting 2012. Palo Alto:Stanford University, 2012.
[53] Zhang X, Jeffrey R G, Thiercelin M. Mechanics of fluid-driven fracture growth in naturally fractured reservoirs with simple network geometries[J]. Journal of Geophysical Research:Solid Earth, 2009, 114(B12):465-484.
[54] Hu M, Wang Y, Rutqvist J. Development of a discontinuous approach for modeling fluid flow in heterogeneous media using the numerical manifold method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(17):1932-1952.
[55] Wu Z, Wong L N Y. Extension of numerical manifold method for coupled fluid flow and fracturing problems[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(18):1990-2008.
[56] Zhang G, Li X, Li H. Simulation of hydraulic fracture utilizing numerical manifold method[J]. Science China Technological Sciences, 2015, 58(9):1542-1557.
[57] Mikelić A, Wheeler M F, Wick T. A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium[J]. Multiscale Modeling & Simulation, 2015, 13(1):367-398.
[58] Miehe C, Mauthe S. Phase field modeling of fracture in multi-physics problems(Part Ⅲ):Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media[J]. Computer Methods in Applied Mechanics and Engineering, 2016(304):619-655.
[59] Mikelić A, Wheeler M F, Wick T. Phase-field modeling of a fluiddriven fracture in a poroelastic medium[J]. Computational Geosciences, 2015, 19(6):1171-1195.
[60] Wick T, Singh G, Wheeler M F. Pressurized-fracture propagation using a phase-field approach coupled to a reservoir simulator[C]//SPE Hydraulic Fracturing Technology Conference. Woodlands:Society of Petroleum Engineers, 2014.
[61] Papanastasiou P. Hydraulic fracture closure in a pressure-sensitive elastoplastic medium[J]. International Journal of Fracture, 2000, 103(2):149-161.
[62] Papanastasiou P C. A coupled elastoplastic hydraulic fracturing model[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3):240.e1-240.e15.
[63] Shojaei A, Dahi Taleghani A, Li G. A continuum damage failure model for hydraulic fracturing of porous rocks[J]. International Journal of Plasticity, 2014(59):199-212.
[64] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. low frequency range[J]. The Journal of the Acoustical Society of America, 1956(28):168-178.
[65] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅱ. higher frequency range[J]. The Journal of the Acoustical Society of America, 1956(28):179-191.
[66] Batchelor G K. An introduction to fluid dynamics[M]. Cambridge:Cambridge University Press, 1967.
[67] Garagash D I. Propagation of a plane-strain hydraulic fracture with a fluid lag:Early-time solution[J]. International Journal of Solids and Structures, 2006, 43(18):5811-5835.
[68] Yao Y. Linear elastic and cohesive fracture analysis to model hydraulic fracture in brittle and ductile rocks[J]. Rock Mechanics and Rock Engineering, 2012, 45(3):375-387.
[69] ABAQUS. Abaqus documentation version 6.14[EB/OL].[2016-07-10]. http://129.97.46.200:2080/v6.14/index.html.
[70] Howard G C, Fast C R. Optimum fluid characteristics for fracture extension[C]//Drilling and Production Practice. New York:American Petroleum Institute, 1957.
[71] Sarris E, Papanastasiou P. Modeling of hydraulic fracturing in a poroelastic cohesive formation[J]. International Journal of Geomechanics, 2012, 12(2):160-167.
[72] Peirce A, Detournay E. An implicit level set method for modeling hydraulically driven fractures[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(33):2858-2885.
[73] Vandamme L M, Roegiers J C. Poroelasticity in hydraulic fracturing simulators[J]. Journal of Petroleum technology, 1990, 42(09):1199-1203.
[74] Valkó P P, Economides M J. Fluid-leakoff delineation in high-permeability fracturing[J]. Society of Petroleum Engineers, 1999, 14(2):110-116.
[75] Carter R D. Derivation of the general equation for estimating the extent of the fractured area[J]. Drilling and Production Practices, 1957. 261-270.
[76] Moes N, Dolbow J, Belytschko. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46(1):131-150.
[77] 王涛, 高岳, 柳占立, 等. 基于扩展有限元法的水力压裂大物模试验的数值模拟[J]. 清华大学学报(自然科学版), 2014, 54(10):1304-1309. Wang T, Gao Y, Liu Z L, et al. Numerical simulations of hydraulic fracturing in large objects using an extended finite element method[J]. Journal of Tsinghua University:Science and Technology, 2014, 54(10):1304-1309.
[78] Gupta P, Duarte C A. Simulation of non-planar three-dimensional hydraulic fracture propagation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(13):1397-1430.
[79] Duarte C A, Oden J T. An h-p adaptive method using clouds[J]. Computer Methods in Applied Mechanics and Enginering, 1996, 139(1):237-262.
[80] 王杰, 李世海, 张青波. 基于单元破裂的岩石裂纹扩展模拟方法[J]. 力学学报, 2015, 47(1):105-118. Wang J, Li S, Zhang Q. Simulation of crack propagation of rock based on splitting elements[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1):105-118.
[81] 魏怀鹏, 易大可, 李世海, 等. 基于连续介质模型的离散元方法中弹簧性质研究[J]. 岩土力学与工程学报,2006, 25(6):1159-1169. Wei H P, Yi D K, Li S H, et al. Study on spring properties of continuum-based discrete element method[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6):1159-1169.
[82] 刘洋,李世海,刘晓宇. 基于连续介质离散元的双重介质渗流应力耦合模型[J]. 岩石力学与工程学报, 2011, 30(5):951-959. Liu Yang, Li Shihai, Liu Xiaoyu. Coupled fluid flow and stress computation model of dual media based on continuum-medium distinct element method[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5):951-959.
Outlines

/