Spescial Issues

Application and development of pumped storage technology

  • HAN Minxiao ,
  • CHANG Xin ,
  • LI Jiqing ,
  • YANG Gang ,
  • SHANG Tiankun
Expand
  • 1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources;School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China;
    2. School of Renewable Energy, North China Electric Power University, Beijing 102206, China;
    3. State Grid Harbin Electric Power Company, Harbin 150010, China;
    4. Shanghai Electric Power Co., Ltd., Shanghai 200010, China

Received date: 2016-01-04

  Revised date: 2016-10-28

  Online published: 2016-12-28

Abstract

The large-scale development of renewable energy generation such as wind energy and solar energy has brought enormous pressure to the safety and stability of the power system. Power system is in urgent need to configure large capacity energy storage systems, compensate power change, and adapt to the large-scale development of new energy sources. More importantly, the demand for load adjustment has recently been very urgent because of low power load rate and fast power fluctuation. The best solution to the problem of safety and stability of power grid, caused by large-scale development of new energy such as wind power, is to install pumped storage station in an appropriate scale. This paper analyzes the pumped storage technology principle and characteristics, expounds the new trend of pumped storage technology development:the construction technology of extra high water head and high capacity; manufacturing technology of large capacity pump turbine; rotor AC excitation technology of variable speed pumped storage units and full size converter technology; the construction and operation technology of pumped storage station for coastal and alpine regions. This paper focuses on the variable speed pumped storage technology, presents the overall structure of the double feed mode and full size converter mode, and puts forward the control strategy in different modes. The composition, technical challenges and solutions of the new special pumped storage power station are also presented in this paper.

Cite this article

HAN Minxiao , CHANG Xin , LI Jiqing , YANG Gang , SHANG Tiankun . Application and development of pumped storage technology[J]. Science & Technology Review, 2016 , 34(23) : 57 -67 . DOI: 10.3981/j.issn.1000-7857.2013.23.006

References

[1] Zhang N, Kang C Q, Kirschen D S, et al. Planning pumped storage capacity for wind power integration[J]. IEEE Transactions on Sustainable Energy, 2013, 4(2):393-401.
[2] Brown P D, Peas Lopes J A, Matos M A. Optimization of pumped storage capacity in an isolated power system with large renewable penetration[J]. IEEE Transactions on Power Systems, 2008, 23(2):523-531.
[3] Ding Lijie, Wang Biao, Zhang Hua, et al. The optimal allocation of pumped storage station in wind farm[C]//Power and Energy Engineering Conference 2012. Shanghai, China:IEEE, 2012:1-4, 27-29.
[4] 李强, 袁越, 李振杰, 等. 考虑峰谷电价的风电-抽水蓄能联合系统能量转化效益研究[J]. 电网技术, 2009(6):13-18. Li Qiang, Yuan Yue, Li Zhenjie, et al. Research on energy shift-ing benefits of hybrid wind power and pumped hydro storage system considering peak valley electricity price[J]. Power System Technology, 2009(6):13-18.
[5] Jae Woong Shim, Youngho Cho, Seog-Joo Kim, et al. Synergistic control of SMES and battery energy storage for enabling dispatchability of renewable energy sources[J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3):570-575.
[6] 李碧辉, 申洪, 汤涌, 等. 风光储联合发电系统储能容量对有功功率的影响及评价指标[J]. 电网技术, 2011(4):123-128. Li Bihui, Shen Hong, Tang Yong, et al. Impacts of energy storage capacity configuration of HPWS to active power characteristics and its relevant indices[J]. Power System Technology, 2011(4):123-128.
[7] 王皓怀, 汤涌, 侯俊贤, 等. 风光储联合发电系统的组合建模与等值[J]. 中国电机工程学报, 2011, 34:1-9. Wang Haohuai, Tang Yong, Hou Junxian, et al. Composition modeling and equivalence of an integrated power generation system of wind, Photovoltaic and Energy Storage Unit[J]. Proceedings of the CSEE, 2011, 34:1-9.
[8] 袁铁江, 陈洁, 刘沛汉, 等. 储能系统改善大规模风电场出力波动的策略[J]. 电力系统保护与控制, 2014(4):47-53. Yuan Tiejiang, Chen Jie, Liu Peihan, et al. Strategy of improving largescale wind farm output fluctuation based on energy storage system[J]. Power System Protection and Control, 2014(4):47-53.
[9] 廖毅. 风光储联合发电系统输出功率特性和控制策略的研究[D]. 北京:华北电力大学, 2012. Liao Yi. An optimization strategy of smoothing control of HPWS active power output[D]. Beijing:North China Electric Power University, 2012.
[10] Bidgoli M A, Mohammadpour H A, Bathaee S M T. Advanced vector control design for DFIM-based hydropower storage for fault ride-through enhancement[J]. IEEE Transactions on Energy Conversion, 2015:1-11.
[11] Furuya S, Taguchi T, Kusunoki K, et al. Successful achievement in a variable speed pumped storage power system at Yagisawa power plant[C]//Power Conversion Conference. Japan:IEEE, 1993:19-21.
[12] 贾金生, 郝荣国, 姜忠见, 等. 抽水蓄能-将富余的电能转化为水的势能, 按需释放[J]. 科学世界, 2015(3):20-47. Jia Jinsheng, Hao Rongguo, Jiang Zhongjian, et al. Pumped storage[J]. Newton, 2015(3):20-47.
[13] 梅州史上最大基建工程:梅蓄电站开工, 投资70亿元[EB/OL]. (2016-01-10)[2015-09-30]. http://news.sina.com.cn/o/2015-09-30/doc-ifximezx0782214.shtml The largest infrastructure project in the history of Meizhou:Mei power plant started to invest 7 billion yuan[EB/OL]. (2016-01-10)[2015-09-30]. http://news.sina.com.cn/o/2015-09-30/doc-ifximezx0782214.shtml
[14] 张东. 基于综合评价法的抽水蓄能电站项目经济效益研究[D]. 北京:华北电力大学, 2014. Zhang Dong. Economical benefit study of pumped storage power station based on comprehensive evaluation method[D]. Beijing:North China Electric Power University, 2014.
[15] 吕项羽, 李德鑫, 郭欢, 等. 含风力-抽蓄发电的电力系统经济运行方式优化[J]. 电力建设, 2014(2):28-35. Lü Xiangxu, Li Dexin, Guo Huan, et al. Economic operation mode optimization of power system with wind and pumped storage power generation[J]. Electric Power Construction, 2014(2):28-35.
[16] 李强, 袁越, 李振杰, 等. 考虑峰谷电价的风电-抽水蓄能联合系统能量转化效益研究[J]. 电网技术, 2009(6):13-18. Li Qiang, Yuan Yue, Li Zhenjie, et al. Research on energy shifting benefits of hybrid wind power and pumped hydro storage system considering peak valley electricity price[J]. Power System Technology, 2009(6):13-18.
[17] Figueiredo F C, Flynn P C. Using diurnal power price to configure pumped storage[J]. IEEE Transactions on Energy Conversion, 2006, 21(3):804-809.
[18] 罗莎莎, 刘云, 刘国中, 等. 国外抽水蓄能电站发展概况及相关启示[J]. 中外能源, 2013(11):26-29. Luo Shasha, Liu Yun, Liu Guozhong, et al. Pumped storage power station development in foreign countries and inspiration for China[J]. Sino-Global Energy, 2013(11):26-29.
[19] Yang H, Liang C, Yang J. Analysis on the functions of pumped storage station in the construction of China's smart grid[C]//Electric Utility Deregulation and Restructuring and Power Technologies. China:IEEE, 2011:1623-1628.
[20] 陈天城. 日本抽水蓄能电站建设中的新技术应用[C]//抽水蓄能电站建设经验技术交流会论文集. 福建:中国水力发电工程学会, 2002:3. Chen Tiancheng. Application of new technology in the construction of pumped storage power station in Japan[C]//Proceedings of the experience and technical exchange meeting for the construction of Pumped Storage Power Station. Fujian:Society of hydroelectric engineering, 2002:3.
[21] 肖贡元. 日本抽水蓄能电站技术的新进展[J]. 水利水电科技进展, 2003(1):61-65. Xiao Gongyuan. New progress of the technology of pumped storage power station in Japan[J]. Advances in Science and Technology of Water resources, 2003(1):61-65.
[22] 韩民晓, Othman Hassan ABDALLA. 可变速抽水蓄能发电技术应用与进展[J]. 科技导报, 2013, 31(16):69-75. Han Minxiao, Othman Hassan ABDALLA. Variable speed pump storage power generation technology and its development[J]. Science and Technology Review, 2013, 31(16):69-75.
[23] Padoan A C, Kawkabani B, Schwery A, et al. Dynamical behaviour comparison between variable speed and synchronous machines with PSS[J]. IEEE Transactions on Power Systems, 2010, 25(3):1555-1565.
[24] Othman Hassan Abdalla Elkhalifa. 基于级联式H-桥多电平变流器的可变速抽水蓄能系统[D]. 北京:华北电力大学, 2014. Othman Hassan Abdalla Elkhalifa. Variable speed pump storage based on cascaded H-bridge multilevel converter[D]. Beijing:North China Electric Power University, 2014.
[25] Abdalla O H, Han M X, Liu C R. Multi-level converter based variable speed pump storage for wind power compensation[C]//Information Science, Electronics and Electrical Engineering. Japan:ISEEE, 2014.
[26] Suul K J A U, Undeland T. Variable speed pumped storage hydropower for integration of wind energy in isolated grids-case description and control strategies[C]//Proc. NORPIE. Finland:Proc. NORPIE, 2008:1.
[27] Suul K J A U, Undeland T. Wind power integration in isolated grids enabled by variable speed pumped storage hydropower plant[C]//Proceedings of IEEE International Conference on Sustainable Energy Technologies. Singapore:ICSET, 2008.
[28] Lung J K, Lu Y, Hung W L, et al. Modeling and dynamic simulations of doubly fed adjustable-speed pumped storage units[J]. IEEE Transactions on Energy Conversion, 2007, 22(2):250-258.
[29] ABB. Pumping efficiency[J/OL]. ABB review, 2014, 2:42-48.[2015-12-20]. http://www09.abb.com/global/scot/scot271.nsf/veritydisplay/8db01-db124333c1bc1257ddc0046cdb7/$file/ABB%20Review%202-2014_72dpi.pdf.
[30] Inoue K, Nagasue S, Okada M, et al. Renovating of existing pumped storage power plant from conventional system to adjustable speed system[C]//Electrical Machines and Systems (ICEMS), South Korea:IEEE, 2010:1642-1644.
[31] GRIMSELWELT. Adventure Hydrodam[EB/OL].[2015-12-20]. http://www.grimselwelt.ch/grimsel-experience/power-plant-tour/adventurehydrodam/
[32] 景巍, 谭国俊, 叶宗彬. 永磁直驱风力发电系统中两电平与三电平变流器比较[J]. 电力系统自动化, 2011, 35(6):92-97. Jing Wei, Tan Guojun, Ye Zongbin. Comparison of two-level and threelevel converters in permanent magnet direct-drive wind power generation system[J]. Automation of Electric Power Systems, 2011, 35(6):92-97.
[33] Clotea L, Forcos A, Marinescu C, et al. Power losses analysis of two-level and three-level neutral clamped inverters for a wind pump storage system[C]//Optimization of Electrical and Electronic Equipment (OPTIM), Romania:OPTIM, 2010:1174-1179.
[34] 陶高周. 全功率变流器机械结构关键技术研究[D]. 合肥:合肥工业大学, 2010. Tao Gaozhou. Research on key technologies of mechanical structure of full power converter[D]. Hefei:HeFei University of Technology, 2010.
[35] Hu Weihao, Chen Zhe, Wang Yue, et al. Flicker mitigation by active power control of variable-speed wind turbines with full-scale back-tobackpower converters[J]. IEEE Transactions on Energy Conversion, 2009, 24(3):640-649.
[36] 肖飞. 直驱式永磁同步风力发电变流器若干关键技术研究[D]. 杭州:浙江大学, 2013. Fei Xiao. Research on several key technologies of converter for permanent magnet directly driven wind turbine[D]. Hangzhou:Zhejiang University, 2013.
[37] Chang Xin, Han Minxiao, Zheng Chao. Power control analysis for variable speed pumped storage with full-size converter[C]//41st Annual Conference of the IEEE Industrial Electronics Society, Japan:IECON, 2015.
[38] 畅欣, 韩民晓, 郑超. FSC可变速抽水蓄能在含大规模风光发电系统中的应用[C]//抽水蓄能电站建设文集2015. 深圳:中国水利发电工程学会, 2015:71-76. Chang Xin, Han Minxiao, Zheng Chao. Application of variable speed pumped storage with full-size converter in the large-scale wind power generation system complementary with solar power generation system, Shenzhen:Society of hydroelectric engineering, 2015:71-76.
[39] Chen G Z, Liu D Y, Wang F, et al. Determination of installed capacity of pumped storage station in WSP hybrid power supply system[C]//Sustainable Power Generation and Supply, SUPERGEN, China:IEEE, 2009:1-5.
[40] Tashiro Y, Kameda Y. Concentration of organic sun-blocking agents in seawater of beaches and coral reefs of Okinawa Island, Japan[J]. Marine Pollution Bulletin, 2013, 77(1-2):333-340.
[41] 大岛胜宏, 松浦润, 关存良. 海水抽水蓄能技术及其展望[J]. 水利水电技术, 2002, 33(1):71-73. Oshima Katsuhiro, Matsuura Jun, Guan Cunliang. Water pumped storage technology and its prospect[J]. Water Conservancy and Hydropower Engineering, 2002, 33(1):71-73.
[42] Fujihara T, Imano H, Oshima K. Development of pump turbine for seawater pumped-storage power plant[J]. American Society of Civil Engineers, 1998, 47:199-202.
[43] Pina A, Ioakimidis C S, Ferrao P. Economic modeling of a seawater pumped-storage system in the context of São Miguel[C]//Sustainable Energy Technologies. Singapore:ICSET, 2008:707-712.
[44] 刘布谷. 世界上首座海水抽水蓄能电站上库的设计与施工[J]. 水利水电快报, 2012(11):15-17. Liu Bugu. The world's first water pumped storage power station, the design and construction of water conservancy and Hydropower[J]. Express Water Resources & Hydropower Information, 2012(11):15-17
[45] 晏红. 日本利用海水的抽水蓄能电站[J]. 水电科技进展, 2001(2):35-38. Yan Hong. Water pumping station in Japan by seawater[J]. Hydropower energy storage technology, 2001(2):35-38.
[46] 冯黎, 王社亮. 西北地区发展抽水蓄能电站的意义与面临的主要问题[J]. 西北水电, 2014(2):1-4. Feng Li, Wang Sheliang. The significance and main problems of the development of pumped storage power station in the northwest region of China[J]. Northwest water and electricity, 2014(2):1-4.
[47] 李建峰, 姚莉, 肖长伟, 等. 论西藏高寒地区水电站闸门防冰冻技术[J]. 西藏科技, 2014(4):65-67. Li Jianfeng, Yao Li, Xiao Changwei, et al. Study on the anti freezing technology of sluice gate in the high cold region of Tibet[J]. Tibet science and technology, 2014(4):65-67.
[48] 杨桥春. 高寒高海拔水电站枢纽防寒过冬问题及解决方案[J]. 电力安全技术, 2015(8):67-68. Yang Qiaochun. The alpine hydropower station hub cold winter problem and solution[J]. Electric safety technology, 2015(8):67-68.
[49] Anselmetti F S, Bühler R, Finger D, et al. Effects of alpine hydropower dams on particle transport and lacustrine sedimentation[J]. Aquatic Sciences, 2007, 69(2):179-198.
[50] 水力発電機器の設計技術の動向調査専門委員会. 可変速揚水発電技術[J]. 電気学会技術報告, 2015(4):114-135. Special committee on the investigation of the design technology of hydraulic power generator[J]. Technical report of Electrical Institute(Japan), 2015(4):114-135.
Outlines

/