[1] Zhang N, Kang C Q, Kirschen D S, et al. Planning pumped storage capacity for wind power integration[J]. IEEE Transactions on Sustainable Energy, 2013, 4(2):393-401.
[2] Brown P D, Peas Lopes J A, Matos M A. Optimization of pumped storage capacity in an isolated power system with large renewable penetration[J]. IEEE Transactions on Power Systems, 2008, 23(2):523-531.
[3] Ding Lijie, Wang Biao, Zhang Hua, et al. The optimal allocation of pumped storage station in wind farm[C]//Power and Energy Engineering Conference 2012. Shanghai, China:IEEE, 2012:1-4, 27-29.
[4] 李强, 袁越, 李振杰, 等. 考虑峰谷电价的风电-抽水蓄能联合系统能量转化效益研究[J]. 电网技术, 2009(6):13-18. Li Qiang, Yuan Yue, Li Zhenjie, et al. Research on energy shift-ing benefits of hybrid wind power and pumped hydro storage system considering peak valley electricity price[J]. Power System Technology, 2009(6):13-18.
[5] Jae Woong Shim, Youngho Cho, Seog-Joo Kim, et al. Synergistic control of SMES and battery energy storage for enabling dispatchability of renewable energy sources[J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3):570-575.
[6] 李碧辉, 申洪, 汤涌, 等. 风光储联合发电系统储能容量对有功功率的影响及评价指标[J]. 电网技术, 2011(4):123-128. Li Bihui, Shen Hong, Tang Yong, et al. Impacts of energy storage capacity configuration of HPWS to active power characteristics and its relevant indices[J]. Power System Technology, 2011(4):123-128.
[7] 王皓怀, 汤涌, 侯俊贤, 等. 风光储联合发电系统的组合建模与等值[J]. 中国电机工程学报, 2011, 34:1-9. Wang Haohuai, Tang Yong, Hou Junxian, et al. Composition modeling and equivalence of an integrated power generation system of wind, Photovoltaic and Energy Storage Unit[J]. Proceedings of the CSEE, 2011, 34:1-9.
[8] 袁铁江, 陈洁, 刘沛汉, 等. 储能系统改善大规模风电场出力波动的策略[J]. 电力系统保护与控制, 2014(4):47-53. Yuan Tiejiang, Chen Jie, Liu Peihan, et al. Strategy of improving largescale wind farm output fluctuation based on energy storage system[J]. Power System Protection and Control, 2014(4):47-53.
[9] 廖毅. 风光储联合发电系统输出功率特性和控制策略的研究[D]. 北京:华北电力大学, 2012. Liao Yi. An optimization strategy of smoothing control of HPWS active power output[D]. Beijing:North China Electric Power University, 2012.
[10] Bidgoli M A, Mohammadpour H A, Bathaee S M T. Advanced vector control design for DFIM-based hydropower storage for fault ride-through enhancement[J]. IEEE Transactions on Energy Conversion, 2015:1-11.
[11] Furuya S, Taguchi T, Kusunoki K, et al. Successful achievement in a variable speed pumped storage power system at Yagisawa power plant[C]//Power Conversion Conference. Japan:IEEE, 1993:19-21.
[12] 贾金生, 郝荣国, 姜忠见, 等. 抽水蓄能-将富余的电能转化为水的势能, 按需释放[J]. 科学世界, 2015(3):20-47. Jia Jinsheng, Hao Rongguo, Jiang Zhongjian, et al. Pumped storage[J]. Newton, 2015(3):20-47.
[13] 梅州史上最大基建工程:梅蓄电站开工, 投资70亿元[EB/OL]. (2016-01-10)[2015-09-30]. http://news.sina.com.cn/o/2015-09-30/doc-ifximezx0782214.shtml The largest infrastructure project in the history of Meizhou:Mei power plant started to invest 7 billion yuan[EB/OL]. (2016-01-10)[2015-09-30]. http://news.sina.com.cn/o/2015-09-30/doc-ifximezx0782214.shtml
[14] 张东. 基于综合评价法的抽水蓄能电站项目经济效益研究[D]. 北京:华北电力大学, 2014. Zhang Dong. Economical benefit study of pumped storage power station based on comprehensive evaluation method[D]. Beijing:North China Electric Power University, 2014.
[15] 吕项羽, 李德鑫, 郭欢, 等. 含风力-抽蓄发电的电力系统经济运行方式优化[J]. 电力建设, 2014(2):28-35. Lü Xiangxu, Li Dexin, Guo Huan, et al. Economic operation mode optimization of power system with wind and pumped storage power generation[J]. Electric Power Construction, 2014(2):28-35.
[16] 李强, 袁越, 李振杰, 等. 考虑峰谷电价的风电-抽水蓄能联合系统能量转化效益研究[J]. 电网技术, 2009(6):13-18. Li Qiang, Yuan Yue, Li Zhenjie, et al. Research on energy shifting benefits of hybrid wind power and pumped hydro storage system considering peak valley electricity price[J]. Power System Technology, 2009(6):13-18.
[17] Figueiredo F C, Flynn P C. Using diurnal power price to configure pumped storage[J]. IEEE Transactions on Energy Conversion, 2006, 21(3):804-809.
[18] 罗莎莎, 刘云, 刘国中, 等. 国外抽水蓄能电站发展概况及相关启示[J]. 中外能源, 2013(11):26-29. Luo Shasha, Liu Yun, Liu Guozhong, et al. Pumped storage power station development in foreign countries and inspiration for China[J]. Sino-Global Energy, 2013(11):26-29.
[19] Yang H, Liang C, Yang J. Analysis on the functions of pumped storage station in the construction of China's smart grid[C]//Electric Utility Deregulation and Restructuring and Power Technologies. China:IEEE, 2011:1623-1628.
[20] 陈天城. 日本抽水蓄能电站建设中的新技术应用[C]//抽水蓄能电站建设经验技术交流会论文集. 福建:中国水力发电工程学会, 2002:3. Chen Tiancheng. Application of new technology in the construction of pumped storage power station in Japan[C]//Proceedings of the experience and technical exchange meeting for the construction of Pumped Storage Power Station. Fujian:Society of hydroelectric engineering, 2002:3.
[21] 肖贡元. 日本抽水蓄能电站技术的新进展[J]. 水利水电科技进展, 2003(1):61-65. Xiao Gongyuan. New progress of the technology of pumped storage power station in Japan[J]. Advances in Science and Technology of Water resources, 2003(1):61-65.
[22] 韩民晓, Othman Hassan ABDALLA. 可变速抽水蓄能发电技术应用与进展[J]. 科技导报, 2013, 31(16):69-75. Han Minxiao, Othman Hassan ABDALLA. Variable speed pump storage power generation technology and its development[J]. Science and Technology Review, 2013, 31(16):69-75.
[23] Padoan A C, Kawkabani B, Schwery A, et al. Dynamical behaviour comparison between variable speed and synchronous machines with PSS[J]. IEEE Transactions on Power Systems, 2010, 25(3):1555-1565.
[24] Othman Hassan Abdalla Elkhalifa. 基于级联式H-桥多电平变流器的可变速抽水蓄能系统[D]. 北京:华北电力大学, 2014. Othman Hassan Abdalla Elkhalifa. Variable speed pump storage based on cascaded H-bridge multilevel converter[D]. Beijing:North China Electric Power University, 2014.
[25] Abdalla O H, Han M X, Liu C R. Multi-level converter based variable speed pump storage for wind power compensation[C]//Information Science, Electronics and Electrical Engineering. Japan:ISEEE, 2014.
[26] Suul K J A U, Undeland T. Variable speed pumped storage hydropower for integration of wind energy in isolated grids-case description and control strategies[C]//Proc. NORPIE. Finland:Proc. NORPIE, 2008:1.
[27] Suul K J A U, Undeland T. Wind power integration in isolated grids enabled by variable speed pumped storage hydropower plant[C]//Proceedings of IEEE International Conference on Sustainable Energy Technologies. Singapore:ICSET, 2008.
[28] Lung J K, Lu Y, Hung W L, et al. Modeling and dynamic simulations of doubly fed adjustable-speed pumped storage units[J]. IEEE Transactions on Energy Conversion, 2007, 22(2):250-258.
[29] ABB. Pumping efficiency[J/OL]. ABB review, 2014, 2:42-48.[2015-12-20]. http://www09.abb.com/global/scot/scot271.nsf/veritydisplay/8db01-db124333c1bc1257ddc0046cdb7/$file/ABB%20Review%202-2014_72dpi.pdf.
[30] Inoue K, Nagasue S, Okada M, et al. Renovating of existing pumped storage power plant from conventional system to adjustable speed system[C]//Electrical Machines and Systems (ICEMS), South Korea:IEEE, 2010:1642-1644.
[31] GRIMSELWELT. Adventure Hydrodam[EB/OL].[2015-12-20]. http://www.grimselwelt.ch/grimsel-experience/power-plant-tour/adventurehydrodam/
[32] 景巍, 谭国俊, 叶宗彬. 永磁直驱风力发电系统中两电平与三电平变流器比较[J]. 电力系统自动化, 2011, 35(6):92-97. Jing Wei, Tan Guojun, Ye Zongbin. Comparison of two-level and threelevel converters in permanent magnet direct-drive wind power generation system[J]. Automation of Electric Power Systems, 2011, 35(6):92-97.
[33] Clotea L, Forcos A, Marinescu C, et al. Power losses analysis of two-level and three-level neutral clamped inverters for a wind pump storage system[C]//Optimization of Electrical and Electronic Equipment (OPTIM), Romania:OPTIM, 2010:1174-1179.
[34] 陶高周. 全功率变流器机械结构关键技术研究[D]. 合肥:合肥工业大学, 2010. Tao Gaozhou. Research on key technologies of mechanical structure of full power converter[D]. Hefei:HeFei University of Technology, 2010.
[35] Hu Weihao, Chen Zhe, Wang Yue, et al. Flicker mitigation by active power control of variable-speed wind turbines with full-scale back-tobackpower converters[J]. IEEE Transactions on Energy Conversion, 2009, 24(3):640-649.
[36] 肖飞. 直驱式永磁同步风力发电变流器若干关键技术研究[D]. 杭州:浙江大学, 2013. Fei Xiao. Research on several key technologies of converter for permanent magnet directly driven wind turbine[D]. Hangzhou:Zhejiang University, 2013.
[37] Chang Xin, Han Minxiao, Zheng Chao. Power control analysis for variable speed pumped storage with full-size converter[C]//41st Annual Conference of the IEEE Industrial Electronics Society, Japan:IECON, 2015.
[38] 畅欣, 韩民晓, 郑超. FSC可变速抽水蓄能在含大规模风光发电系统中的应用[C]//抽水蓄能电站建设文集2015. 深圳:中国水利发电工程学会, 2015:71-76. Chang Xin, Han Minxiao, Zheng Chao. Application of variable speed pumped storage with full-size converter in the large-scale wind power generation system complementary with solar power generation system, Shenzhen:Society of hydroelectric engineering, 2015:71-76.
[39] Chen G Z, Liu D Y, Wang F, et al. Determination of installed capacity of pumped storage station in WSP hybrid power supply system[C]//Sustainable Power Generation and Supply, SUPERGEN, China:IEEE, 2009:1-5.
[40] Tashiro Y, Kameda Y. Concentration of organic sun-blocking agents in seawater of beaches and coral reefs of Okinawa Island, Japan[J]. Marine Pollution Bulletin, 2013, 77(1-2):333-340.
[41] 大岛胜宏, 松浦润, 关存良. 海水抽水蓄能技术及其展望[J]. 水利水电技术, 2002, 33(1):71-73. Oshima Katsuhiro, Matsuura Jun, Guan Cunliang. Water pumped storage technology and its prospect[J]. Water Conservancy and Hydropower Engineering, 2002, 33(1):71-73.
[42] Fujihara T, Imano H, Oshima K. Development of pump turbine for seawater pumped-storage power plant[J]. American Society of Civil Engineers, 1998, 47:199-202.
[43] Pina A, Ioakimidis C S, Ferrao P. Economic modeling of a seawater pumped-storage system in the context of São Miguel[C]//Sustainable Energy Technologies. Singapore:ICSET, 2008:707-712.
[44] 刘布谷. 世界上首座海水抽水蓄能电站上库的设计与施工[J]. 水利水电快报, 2012(11):15-17. Liu Bugu. The world's first water pumped storage power station, the design and construction of water conservancy and Hydropower[J]. Express Water Resources & Hydropower Information, 2012(11):15-17
[45] 晏红. 日本利用海水的抽水蓄能电站[J]. 水电科技进展, 2001(2):35-38. Yan Hong. Water pumping station in Japan by seawater[J]. Hydropower energy storage technology, 2001(2):35-38.
[46] 冯黎, 王社亮. 西北地区发展抽水蓄能电站的意义与面临的主要问题[J]. 西北水电, 2014(2):1-4. Feng Li, Wang Sheliang. The significance and main problems of the development of pumped storage power station in the northwest region of China[J]. Northwest water and electricity, 2014(2):1-4.
[47] 李建峰, 姚莉, 肖长伟, 等. 论西藏高寒地区水电站闸门防冰冻技术[J]. 西藏科技, 2014(4):65-67. Li Jianfeng, Yao Li, Xiao Changwei, et al. Study on the anti freezing technology of sluice gate in the high cold region of Tibet[J]. Tibet science and technology, 2014(4):65-67.
[48] 杨桥春. 高寒高海拔水电站枢纽防寒过冬问题及解决方案[J]. 电力安全技术, 2015(8):67-68. Yang Qiaochun. The alpine hydropower station hub cold winter problem and solution[J]. Electric safety technology, 2015(8):67-68.
[49] Anselmetti F S, Bühler R, Finger D, et al. Effects of alpine hydropower dams on particle transport and lacustrine sedimentation[J]. Aquatic Sciences, 2007, 69(2):179-198.
[50] 水力発電機器の設計技術の動向調査専門委員会. 可変速揚水発電技術[J]. 電気学会技術報告, 2015(4):114-135. Special committee on the investigation of the design technology of hydraulic power generator[J]. Technical report of Electrical Institute(Japan), 2015(4):114-135.