[1] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithi um batteries[J]. Nature, 2001, 414(6861):359-367.
[2] Kamali A R, Fray D J. Review on carbon and silicon based materials as anode materials for lithium ion batteries[J]. Journal of New Materials for Electrochemical Systems, 2010, 13(2):147-160.
[3] Zhang W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(1):13-24.
[4] Takada K. Progress and prospective of solid-state lithium batteries[J]. Ac ta Materialia, 2013, 61(3):759-770.
[5] Service R F. Getting there[J]. Science, 2011, 332(6037):1494-1496.
[6] Hayner C M, Zhao X, Kung H H. Materials for rechargeable lithium-ion batteries[J]. Annual Review of Chemical and Biomolecular Engineering, 2012, 3(1):445-471.
[7] Su X, Wu Q, Li J, et al. Silicon-based nanomaterials for lithium-ion bat teries:A review[J]. Advanced Energy Materials, 2014, 4(1):1300882.
[8] Tarascon J M. Key challenges in future Li-battery research[J]. Philosophi cal Transactions of the Royal Society A:Mathematical Physical and Engi neering Sciences, 2010, 368(1923):3227-3241.
[9] Larcher D, Beattie S, Morcrette M, et al. Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries[J]. Jour nal of Materials Chemistry, 2007, 17(36):3759-3772.
[10] Obrovac M N, Christensen L. Structural changes in silicon anodes during lithium insertion/extraction[J]. Electrochemical and Solid State Letters, 2004, 7(5):A93-A96.
[11] Liu X H, Zhang L Q, Zhong L, et al. Ultrafast electrochemical lithiation of individual Si nanowire anodes[J]. Nano Letters, 2011, 11(6):2251-2258.
[12] Marom R, Amalraj S F, Leifer N, et al. A review of advanced and practi cal lithium battery materials[J]. Journal of Materials Chemistry, 2011, 21(27):9938-9954.
[13] Neumann G, Würsig A. Lithium storage in silicon[J]. Physica Status Soli di:Rapid Research Letters, 2010, 4(1-2):A21-A23.
[14] Chao S C, Song Y F, Wang C C, et al. Study on microstructural deforma tion of working Sn and SnSb anode particles for Li-ion batteries by in si tu transmission X-ray microscopy[J]. Journal of Physical Chemistry C, 2011, 115(44):22040-22047.
[15] Chao S C, Yen Y C, Song Y F, et al. A study on the interior microstruc tures of working Sn particle electrode of Li-ion batteries by in situ Xray transmission microscopy[J]. Electrochemistry Communications, 2010, 12(2):234-237.
[16] Wang J, Fan F, Liu Y, et al. Structural evolution and pulverization of tin nanoparticles during lithiation-delithiation cycling[J]. Journal of The Electrochemical Society, 2014, 161(11):F3019-F3024.
[17] Liang W, Yang H, Fan F, et al. Tough germanium nanoparticles under electrochemical cycling[J]. Acs Nano, 2013, 7(4):3427-3433.
[18] Gu M, Yang H, Perea D E, et al. Bending-induced symmetry breaking of lithiation in germanium nanowires[J]. Nano Letters, 2014, 14(8):4622-4627.
[19] Liu X H, Zheng H, Zhong L, et al. Anisotropic swelling and fracture of silicon nanowires during lithiation[J]. Nano Letters, 2011, 11(8):3312-3318.
[20] Beaulieu L Y, Eberman K W, Turner R L, et al. Colossal reversible vol ume changes in lithium alloys[J]. Electrochemical and Solid State Let ters, 2001, 4(9):A137-A140.
[21] Ryu J H, Kim J W, Sung Y E, et al. Failure modes of silicon powder neg ative electrode in lithium secondary batteries[J]. Electrochemical and Solid-State Letters, 2004, 7(10):A306-A309.
[22] Maranchi J P, Hepp A F, Evans A G, et al. Interfacial properties of the a-Si/Cu:Active-inactive thin-film anode system for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2006, 153(6):A1246-A1253.
[23] Kasavajjula U, Wang C S, Appleby A J. Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells[J]. Journal of Power Sources, 2007, 163(2):1003-1039.
[24] Cui L F, Hu L B, Choi J W, et al. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries[J]. Acs Nano, 2010, 4(7):3671-3678.
[25] Huang J Y, Zhong L, Wang C M, et al. In situ observation of the electro chemical lithiation of a single SnO2 nanowire electrode[J]. Science, 2010, 330(6010):1515-1520.
[26] Goldman J L, Long B R, Gewirth A A, et al. Strain anisotropies and selflimiting capacities in single-crystalline 3D silicon microstructures:Mod els for high energy density lithium-ion battery anodes[J]. Advanced Functional Materials, 2011, 21(13):2412-2422.
[27] Lee S W, McDowell M T, Berla L A, et al. Fracture of crystalline silicon nanopillars during electrochemical lithium insertion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(11):4080-4085.
[28] Liu X H, Zhong L, Huang S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. Acs Nano, 2012, 6(2):1522-1531.
[29] Lee S W, Ryu I, Nix W D, et al. Fracture of crystalline germanium dur ing electrochemical lithium insertion[J]. Extreme Mechanics Letters, 2015(2):15-19.
[30] Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for ad vanced energy conversion and storage devices[J]. Nature Materials, 2005, 4(5):366-377.
[31] Guo Y G, Hu J S, Wan L J. Nanostructured materials for electrochemical energy conversion and storage devices[J]. Advanced Materials, 2008, 20(23):2878-2887.
[32] Szczech J R, Jin S. Nanostructured silicon for high capacity lithium bat tery anodes[J]. Energy & Environmental Science, 2011, 4(1):56-72.
[33] Ji L W, Lin Z, Alcoutlabi M, et al. Recent developments in nanostruc tured anode materials for rechargeable lithium-ion batteries[J]. Energy and Environmental Science, 2011, 4(8):2682-2699.
[34] Chan C K, Peng H L, Liu G, et al. High-performance lithium battery an odes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1):31-35.
[35] Chan C K, Zhang X F, Cui Y. High capacity Li ion battery anodes using Ge nanowires[J]. Nano Letters, 2008, 8(1):307-309.
[36] Rolison D R, Nazar L F. Electrochemical energy storage to power the 21st century[J]. Mrs Bulletin, 2011, 36(7):486-493.
[37] Choi N S, Yao Y, Cui Y, et al. One dimensional Si/Sn-based nanowires and nanotubes for lithium-ion energy storage materials[J]. Journal of Ma terials Chemistry, 2011, 21(27):9825-9840.
[38] Lee S W, McDowell M T, Choi J W, et al. Anomalous Shape changes of silicon nanopillars by electrochemical lithiation[J]. Nano Letters, 2011, 11(7):3034-3039.
[39] Liu N, Hu L, McDowell M T, et al. Prelithiated silicon nanowires as an anode for lithium ion batteries[J]. Acs Nano, 2011, 5(8):6487-6493.
[40] Liu X H, Huang S, Picraux S T, et al. Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling:An in situ transmis sion electron microscopy study[J]. Nano Letters, 2011, 11(9):3991-3997.
[41] Park M H, Kim M G, Joo J, et al. Silicon nanotube battery anodes[J]. Na no Letters, 2009, 9(11):3844-3847.
[42] Song T, Xia J, Lee J-H, et al. Arrays of sealed silicon nanotubes as an odes for lithium ion batteries[J]. Nano Letters, 2010, 10(5):1710-1716.
[43] Liu Y, Zheng H, Liu X H, et al. Lithiation-induced embrittlement of mul tiwalled carbon nanotubes[J]. ACS Nano, 2011, 5(9):7245-7253.
[44] Ma H, Cheng F Y, Chen J, et al. Nest-like silicon nanospheres for highcapacity lithium storage[J]. Advanced Materials, 2007, 19(22):4067-4070.
[45] Choi H S, Lee J G, Lee H Y, et al. Effects of surrounding confinements of Si nanoparticles on Si-based anode performance for lithium ion batteries[J]. Electrochimica Acta, 2010, 56(2):790-796.
[46] Yao Y, McDowell M T, Ryu I, et al. Interconnected silicon hollow nano spheres for lithium-ion battery anodes with long cycle life[J]. Nano Let ters, 2011, 11(7):2949-2954.
[47] McDowell M T, Ryu I, Lee S W, et al. Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron micros copy[J]. Advanced Materials, 2012, 24(45):6034-6041.
[48] Wang J W, Liu X H, Mao S X, et al. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction[J]. Nano Let ters, 2012, 12(11):5897-5902.
[49] McDowell M T, Lee S W, Harris J T, et al. In situ TEM of two-phase lithiation of amorphous silicon nanospheres[J]. Nano Letters, 2013, 13(2):758-764.
[50] Wang J W, He Y, Fan F, et al. Two-phase electrochemical lithiation in amorphous silicon[J]. Nano Letters, 2013, 13(2):709-715.
[51] Maranchi J P, Hepp A F, Kumta P N. High capacity, reversible silicon thin-film anodes for lithium-ion batteries[J]. Electrochemical and Solid-State Letters, 2003, 6(9):A198-A201.
[52] Nadimpalli S P V, Sethuraman V A, Bucci G, et al. On plastic deforma tion and fracture in Si films during electrochemical lithiation/delithiation cycling[J]. Journal of the Electrochemical Society, 2013, 160(10):A1885-A1893.
[53] Cui L F, Ruffo R, Chan C K, et al. Crystalline-amorphous core-shell sili con nanowires for high capacity and high current battery electrodes[J]. Nano Letters, 2009, 9(1):491-495.
[54] Huang R, Fan X, Shen W C, et al. Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes[J]. Applied Phys ics Letters, 2009, 95(13):133119.
[55] Chen H X, Dong Z X, Fu Y P, et al. Silicon nanowires with and without carbon coating as anode materials for lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2010, 14(10):1829-1834.
[56] Hertzberg B, Alexeev A, Yushin G. Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space[J]. Journal of the Amer ican Chemical Society, 2010, 132(25):8548-8549.
[57] Wu Z S, Ren W C, Wen L, et al. Graphene anchored with Co3O4 nanopar ticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. Acs Nano, 2010, 4(6):3187-3194.
[58] Zhang L Q, Liu X H, Liu Y, et al. Controlling the lithiation-induced strain and charging rate in nanowire electrodes by coating[J]. Acs Nano, 2011, 5(6):4800-4809.
[59] Yi R, Dai F, Gordin M L, et al. Influence of silicon nanoscale building blocks size and carbon coating on the performance of micro-sized Si-C composite Li-ion anodes[J]. Advanced Energy Materials, 2013:1507-1515.
[60] Sandu G, Brassart L, Gohy J F, et al. Surface coating mediated swelling and fracture of silicon nanowires during lithiation[J]. Acs Nano, 2014, 8(9):9427-9436.
[61] Liu X H, Huang J Y. In situ TEM electrochemistry of anode materials in lithium ion batteries[J]. Energy & Environmental Science, 2011, 4(10):3844-3860.
[62] Liu X H, Liu Y, Kushima A, et al. In situ TEM experiments of electro chemical lithiation and delithiation of individual nanostructures[J]. Ad vanced Energy Materials, 2012, 2(7):722-741.
[63] Liu X H, Wang J W, Huang S, et al. In situ atomic-scale imaging of elec trochemical lithiation in silicon[J]. Nature Nanotechnology, 2012, 7(11):749-756.
[64] Liu X H, Wang J W, Liu Y, et al. In situ transmission electron microsco py of electrochemical lithiation, delithiation and deformation of individu al graphene nanoribbons[J]. Carbon, 2012, 50(10):3836-3844.
[65] Sun C F, Karki K, Jia Z, et al. A beaded-string silicon anode[J]. Acs Na no, 2013, 7(3):2717-2724.
[66] Chon M J, Sethuraman V A, McCormick A, et al. Real-time measure ment of stress and damage evolution during initial lithiation of crystal line silicon[J]. Physical Review Letters, 2011, 107(4):045503.
[67] Liu X H, Fan F, Yang H, et al. Self-limiting lithiation in silicon nanow ires[J]. Acs Nano, 2012, 7(2):1495-1503.
[68] Berla L A, Lee S W, Ryu I, et al. Robustness of amorphous silicon dur ing the initial lithiation/delithiation cycle[J]. Journal of Power Sources, 2014, 258:253-259.
[69] Liang W, Hong L, Yang H, et al. Nanovoid formation and annihilation in gallium nanodroplets under lithiation-delithiation cycling[J]. Nano Let ters, 2013, 13(11):5212-5217.
[70] Lee K T, Jung Y S, Kim T, et al. Liquid gallium electrode confined in po rous carbon matrix as anode for lithium secondary batteries[J]. Electro chemical and Solid State Letters, 2008, 11(3):A21-A24.
[71] Deshpande R D, Li J C, Cheng Y T, et al. Liquid metal alloys as selfhealing negative electrodes for lithium ion batteries[J]. Journal of the Electrochemical Society, 2011, 158(8):A845-A849.
[72] Luo L, Yang H, Yan P, et al. Surface-coating regulated lithiation kinet ics and degradation in silicon nanowires for lithium ion battery[J]. Acs Nano, 2015, 9(5):5559-5566.
[73] Luo L, Zhao P, Yang H, et al. Surface coating constraint induced selfdischarging of silicon nanoparticles as anodes for lithium ion batteries[J]. Nano Letters, 2015, 15(10):7016-7022.
[74] Gu M, Li Y, Li X, et al. In situ TEM study of lithiation behavior of sili con nanoparticles attached to and embedded in a carbon matrix[J]. Acs Nano, 2012, 6(9):8439-8447.
[75] Lu X, Bogart T D, Gu M, et al. In situ TEM observations of Sn-contain ing silicon nanowires undergoing reversible pore formation due to fast lithiation/delithiation kinetics[J]. The Journal of Physical Chemistry C, 2015, 119(38):21889-21895.
[76] Luo L, Wu J, Luo J, et al. Dynamics of electrochemical lithiation/delithia tion of graphene-encapsulated silicon nanoparticles studied by in-situ TEM[J]. Scientific Reports, 2014, 4(1):3863.
[77] Wang C M, Li X, Wang Z, et al. In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/car bon anode for lithium ion batteries[J]. Nano Letters, 2012, 12(3):1624-1632.
[78] Weker J N, Liu N, Misra S, et al. In situ nanotomography and operando transmission X-ray microscopy of micron-sized Ge particles[J]. Energy and Environmental Science, 2014, 7(8):2771-2777.
[79] Lee S W, Lee H W, Ryu I, et al. Kinetics and fracture resistance of lithi ated silicon nanostructure pairs controlled by their mechanical interac tion[J]. Nature Communications, 2015(6):7533.
[80] Aurbach D, Koltypin M, Teller H. In situ AFM imaging of surface phe nomena on composite graphite electrodes during lithium insertion[J]. Langmuir, 2002, 18(23):9000-9009.
[81] Becker C R, Strawhecker K E, McAllister Q P, et al. In situ atomic force microscopy of lithiation and delithiation of silicon nanostructures for lith ium ion batteries[J]. Acs Nano, 2013, 7(10):9173-9182.
[82] McAllister Q P, Strawhecker K E, Becker C R, et al. In situ atomic force microscopy nanoindentation of lithiated silicon nanopillars for lithium ion batteries[J]. Journal of Power Sources, 2014, 257(3):380-387.
[83] Berla L A, Lee S W, Cui Y, et al. Mechanical behavior of electrochemi cally lithiated silicon[J]. Journal of Power Sources, 2015, 273(0):41-51.
[84] Hertzberg B, Benson J, Yushin G. Ex-situ depth-sensing indentation measurements of electrochemically produced Si-Li alloy films[J]. Elec trochemistry Communications, 2011, 13(8):818-821.
[85] Wang X, Fan F, Wang J, et al. High damage tolerance of electrochemical ly lithiated silicon[J]. Nature Communications, 2015(6):8417.
[86] Sethuraman V A, Chon M J, Shimshak M, et al. In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation[J]. Journal of Power Sources, 2010, 195(15):5062-5066.
[87] Pharr M, Suo Z, Vlassak J J. Measurements of the fracture energy of lithi ated silicon electrodes of Li-ion batteries[J]. Nano Letters, 2013, 13(11):5570-5577.
[88] Limthongkul P, Jang Y I, Dudney N J, et al. Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage[J]. Acta Materialia, 2003, 51(4):1103-1113.
[89] Kang K, Lee H S, Han D W, et al. Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery[J]. Applied Phys ics Letters, 2010, 96(5):053110.
[90] Cui Z, Gao F, Qu J. Two-phase versus two-stage versus multi-phase lithiation kinetics in silicon[J]. Applied Physics Letters, 2013, 103(14):143901.
[91] Chan M K Y, Long B R, Gewirth A A, et al. The first-cycle electrochemi cal lithiation of crystalline Ge:Dopant and orientation dependence and comparison with Si[J]. The Journal of Physical Chemistry Letters, 2011, 460(2):3092-3095.
[92] Chevrier V L, Dahn J R. First principles model of amorphous silicon lithiation[J]. Journal of the Electrochemical Society, 2009, 156(6):A454-A458.
[93] Chevrier V L, Dahn J R. First principles studies of disordered lithiated silicon[J]. Journal of the Electrochemical Society, 2010, 157(4):A392-A398.
[94] Fan X, Zheng W T, Kuo J L. Adsorption and diffusion of Li on pristine and defective graphene[J]. ACS Applied Materials & Interfaces, 2012, 4(5):2432-2438.
[95] Fan X, Zheng W T, Kuo J L, et al. Adsorption of single Li and the forma tion of small Li clusters on graphene for the anode of lithium-ion batter ies[J]. ACS Applied Materials & Interfaces, 2013, 5(16):7793-7797.
[96] Garay Tapia A M, Romero A H, Barone V. Lithium adsorption on gra phene:From isolated adatoms to metallic sheets[J]. Journal of Chemical Theory and Computation, 2012, 8(3):1064-1071.
[97] Kim H, Kweon K E, Chou C Y, et al. On the nature and behavior of Li at oms in Si:A first principles study[J]. The Journal of Physical Chemistry C, 2010, 114(41):17942-17946.
[98] Kubota Y, Escano M C S, Nakanishi H, et al. Crystal and electronic structure of Li15Si4[J]. Journal of Applied Physics, 2007, 102(5):053704.
[99] Kubota Y, Escano M C S, Nakanishi H, et al. Electronic structure of LiSi[J]. Journal of Alloys and Compounds, 2008, 458(1/2):151-157.
[100] Meunier V, Kephart J, Roland C, et al. Ab initio investigations of lithi um diffusion in carbon nanotube systems[J]. Physical Review Letters, 2002, 88(7):075506.
[101] Shenoy V B, Johari P, Qi Y. Elastic softening of amorphous and crystal line Li-Si phases with increasing Li concentration:A first-principles study[J]. Journal of Power Sources, 2010, 195(19):6825-6830.
[102] Stournara M E, Guduru P R, Shenoy V B. Elastic behavior of crystalline Li-Sn phases with increasing Li concentration[J]. Journal of Power Sources, 2012, 208(208):165-169.
[103] Wan W H, Zhang Q F, Cui Y, et al. First principles study of lithium in sertion in bulk silicon[J]. Journal of Physics-Condensed Matter, 2010, 22(41):415501.
[104] Zhang Q, Cui Y, Wang E. Anisotropic lithium insertion behavior in sili con nanowires:Binding energy, diffusion barrier, and strain effect[J]. The Journal of Physical Chemistry C, 2011, 115(19):9376-9381.
[105] Zhang Q F, Zhang W X, Wan W H, et al. Lithium insertion in silicon nanowires:An ab initio study[J]. Nano Letters, 2010, 10(9):3243-3249.
[106] Zhao K, Wang W L, Gregoire J, et al. Lithium-assisted plastic deforma tion of silicon electrodes in lithium-ion batteries:A first-principles theoretical study[J]. Nano Letters, 2011, 11(7):2962-2967.
[107] Zhou L J, Hou Z F, Wu L M. First-principles study of lithium adsorp tion and diffusion on graphene with point defects[J]. The Journal of Physical Chemistry C, 2012, 116(41):21780-21787.
[108] Chan M K Y, Wolverton C, Greeley J P. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline sili con[J]. Journal of the American Chemical Society, 2012, 134(35):14362-14374.
[109] Chou C Y, Kim H, Hwang G S. A comparative first-principles study of the structure, energetics, and properties of Li-M (M=Si, Ge, Sn) alloys[J]. The Journal of Physical Chemistry C, 2011, 115(40):20018-20026.
[110] Cubuk E D, Kaxiras E. Theory of structural transformation in lithiated amorphous silicon[J]. Nano Letters, 2014, 14(7):4065-4070.
[111] Cubuk E D, Wang W L, Zhao K, et al. Morphological evolution of si nanowires upon lithiation:A first-principles multiscale model[J]. Nano Letters, 2013, 13(5):2011-2015.
[112] Cui Z, Gao F, Cui Z, et al. A second nearest-neighbor embedded atom method interatomic potential for Li-Si alloys[J]. Journal of Power Sourc es, 2012(207):150-159.
[113] Cui Z, Gao F, Cui Z, et al. Developing a second nearest-neighbor modi fied embedded atom method interatomic potential for lithium[J]. Model ling and Simulation in Materials Science and Engineering, 2012, 20(1):015014.
[114] Duin A C T V, Dasgupta S, Lorant F, et al. ReaxFF:A reactive force field for hydrocarbons[J]. Journal of Physical Chemistry A, 2001, 105(41):9396-9409.
[115] Kim S P, Duin A C T V, Shenoy V B. Effect of electrolytes on the struc ture and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries:A molecular dynamics study[J]. Journal of Power Sources, 2011, 196(20):8590-8597.
[116] Russo M F, Duin A C T V. Atomistic-scale simulations of chemical re actions:Bridging from quantum chemistry to engineering[J]. Nuclear Instruments and Methods in Physics Research Section B-Beam Interac tions with Materials and Atoms, 2011, 269(14):1549-1554.
[117] Yang H, Huang X, Liang W, et al. Self-weakening in lithiated gra phene electrodes[J]. Chemical Physics Letters, 2013, 563(0):58-62.
[118] Huang X, Yang H, Liang W, et al. Lithiation induced corrosive fracture in defective carbon nanotubes[J]. Applied Physics Letters, 2013, 103(15):153901.
[119] Fan F F, Huang S, Yang H, et al. Mechanical properties of amorphous LixSi alloys:A reactive force field study[J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(7):074002.
[120] Kim S P, Datta D, Shenoy V B. Atomistic mechanisms of phase bound ary evolution during initial lithiation of crystalline silicon[J]. Journal of Physical Chemistry C, 2014, 118(31):17247-17253.
[121] Liang T, Shin Y K, Cheng Y T, et al. Reactive potentials for advanced atomistic simulations[J]. Annual Review of Materials Research, 2013, 43(1):109-129.
[122] Ding B, Li X, Zhang X, et al. Brittle versus ductile fracture mechanism transition in amorphous lithiated silicon:From intrinsic nanoscale cavi tation to shear banding[J]. Nano Energy, 2015(18):89-96.
[123] An Y, Jiang H. A finite element simulation on transient large deforma tion and mass diffusion in electrodes for lithium ion batteries[J]. Model ling and Simulation in Materials Science and Engineering, 2013, 21(7):074007.
[124] Bower A F, Guduru P R, Sethuraman V A. A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithi um-ion half-cell[J]. Journal of the Mechanics and Physics of Solids, 2011, 59(4):804-828.
[125] Cui Z, Gao F, Qu J. A finite deformation stress-dependent chemical po tential and its applications to lithium ion batteries[J]. Journal of the Me chanics and Physics of Solids, 2012, 60(7):1280-1295.
[126] Gao Y F, Zhou M. Strong stress-enhanced diffusion in amorphous lithi um alloy nanowire electrodes[J]. Journal of Applied Physics, 2011, 109(1):014310.
[127] Haftbaradaran H, Song J, Curtin W A, et al. Continuum and atomistic models of strongly coupled diffusion, stress, and solute concentration[J]. Journal of Power Sources, 2011, 196(1):361-370.
[128] Ryu I, Choi J W, Cui Y, et al. Size-dependent fracture of Si nanowire battery anodes[J]. Journal of the Mechanics and Physics of Solids, 2011, 59(9):1717-1730.
[129] Zhao K J, Pharr M, Vlassak J J, et al. Inelastic hosts as electrodes for high-capacity lithium-ion batteries[J]. Journal of Applied Physics, 2011, 109(1):016110.
[130] Zhao K, Pharr M, Wan Q, et al. Concurrent reaction and plasticity dur ing initial lithiation of crystalline silicon in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2012, 159(3):A238-A243.
[131] Yang H, Huang S, Huang X, et al. Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires[J]. Nano Letters, 2012, 12(4):1953-1958.
[132] Pharr M, Zhao K, Wang X, et al. Kinetics of initial lithiation of crystal line silicon electrodes of lithium-ion batteries[J]. Nano Letters, 2012, 12(9):5039-5047.
[133] Cui Z, Gao F, Qu J. Interface-reaction controlled diffusion in binary sol ids with applications to lithiation of silicon in lithium-ion batteries[J]. Journal of the Mechanics and Physics of Solids, 2013, 61(2):293-310.
[134] Huang S, Fan F, Li J, et al. Stress generation during lithiation of highcapacity electrode particles in lithium ion batteries[J]. Acta Materialia, 2013, 61(12):4354-4364.
[135] Yang H, Fan F, Liang W, et al. A chemo-mechanical model of lithia tion in silicon[J]. Journal of the Mechanics and Physics of Solids, 2014, 70(1):349-361.
[136] Ryu I, Lee S W, Gao H, et al. Microscopic model for fracture of crystal line Si nanopillars during lithiation[J]. Journal of Power Sources, 2014, 255(6):274-282.
[137] Yang H, Liang W, Guo X, et al. Strong kinetics-stress coupling in lithi ation of Si and Ge anodes[J]. Extreme Mechanics Letters, 2015, 30(1):1-6.
[138] Xu R, Zhao K. Mechanical interactions regulated kinetics and morphol ogy of composite electrodes in Li-ion batteries[J/OL]. Extreme Mechan ics Letters, 2015.[2016-08-23]. http://dx.doi.org/10.1016/j.eml. 2015.10.004.
[139] Chen L Q. Phase-field models for microstructure evolution[J]. Annual Review of Materials Research, 2002, 32(1):113-140.
[140] Chen L, Fan F, Hong L, et al. A phase-field model coupled with large elasto-plastic deformation:Application to lithiated silicon electrodes[J]. Journal of the Electrochemical Society, 2014, 161(11):F3164-F3172.
[141] Klinsmann M, Rosato D, Kamlah M, et al. Modeling crack growth dur ing Li extraction in storage particles using a fracture phase field ap proach[J]. Journal of the Electrochemical Society, 2016, 163(2):A102-A118.
[142] Zuo P, Zhao Y P. A phase field model coupling lithium diffusion and stress evolution with crack propagation and application in lithium ion batteries[J]. Physical Chemistry Chemical Physics, 2015, 17(1):287-297.
[143] Wu H, Chan G, Choi J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature Nanotechnology, 2012, 7(5):309-314.
[144] Xiao Q, Gu M, Yang H, et al. Inward lithium-ion breathing of hierarchi cally porous silicon anodes[J]. Nature Communications, 2015(6):8844.
[145] Yi R, Dai F, Gordin M L, et al. Micro-sized Si-C composite with inter connected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries[J]. Advanced Energy Ma terials, 2013, 3(3):295-300.
[146] Sun Y, Sills R B, Hu X, et al. A bamboo-inspired nanostructure design for flexible, foldable, and twistable energy storage devices[J]. Nano Let ters, 2015, 15(6):3899-3906.
[147] Liu N, Wu H, McDowell M T, et al. A yolk-shell design for stabilized and scalable li-ion battery alloy anodes[J]. Nano Letters, 2012, 12(6):3315-3321.
[148] Li Y, Yan K, Lee H W, et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes[J]. Nature Energy, 2016, 1(2):15029.
[149] Kim S, Choi S J, Zhao K, et al. Electrochemically driven mechanical en ergy harvesting[J]. Nature Communications, 2016(7):10146.
[150] Manthiram A, Chung S H, Zu C. Lithium-sulfur batteries:Progress and prospects[J]. Advanced Materials, 2015, 27(12):1980-2006.
[151] Slater M D, Kim D, Lee E, et al. Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8):947-958.