Articles

Prospects of diode pumped alkali lasers' application to the pumping of atomic magnetometer

  • LI Zhiyong ,
  • TAN Rongqing ,
  • KE Changjun ,
  • HUANG Wei ,
  • YE Qing
Expand
  • 1. Department of High Power Gas Laser, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China;
    2. State Key Laboratory of Pulsed Power Laser Technology;Electronic Engineering Institute of PLA, Hefei 230037, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2015-05-29

  Revised date: 2016-05-06

  Online published: 2016-12-28

Abstract

Since its central wavelength is exactly equal to that of alkali D1 line without frequency stabilization, alkali laser is of great potential in the spin-exchange relaxation free (SERF) atomic magnetometer. In this paper, the research developments of SERF atomic magnetometers' pumping source and alkali lasers are presented. The qualifications of a good pumping source for SERF atomic magnetometers are analyzed. And the prospects and the challenges for alkali lasers' application to the pumping of SERF atomic magnetometer are also discussed.

Cite this article

LI Zhiyong , TAN Rongqing , KE Changjun , HUANG Wei , YE Qing . Prospects of diode pumped alkali lasers' application to the pumping of atomic magnetometer[J]. Science & Technology Review, 2016 , 34(23) : 99 -105 . DOI: 10.3981/j.issn.1000-7857.2016.23.010

References

[1] 刘国斌, 孙献平, 顾思洪, 等. 高灵敏度原子磁力计研究进展[J]. 物理, 2012, 41(12):803-810. Liu Guobin, Sun Xianping, Gu Sihong, et al. Progress in high sensitive atomic magnetometers[J]. Physics, 2012, 41(12):803-810.
[2] Budker D, Romalis M. Optical magnetometry[J]. Nature Physics, 2007, 3(4):227-234.
[3] 董浩斌, 张昌达. 量子磁力仪再评说[J]. 工程地球物理学报, 2010, 7(4):460-470. Dong Haobin, Zhang Changda. A further review of the quantum magnetometers[J]. Chinese Journal of Engineering Geophysics, 2010, 7(4):460-470.
[4] Kominis I K, Kornack T W, Allred J C, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003, 422(6932):596-599.
[5] Zhang J H, Liu Q, Zeng X J, et al. All-optical cesium atomic magnetometer with high sensitivity[J]. Chinese Physics Letters, 2012, 29(6):068501.
[6] Fang J C, Wang T, Quan W, et al. In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect[J]. Review of Scientific Instruments, 2014, 85(6):063108.
[7] Lee H J, Shim J H, Moon H S, et al. Flat-response spin-exchange relaxation free atomic magnetometer under negative feedback[J]. Optics Express, 2014, 22(17):19887-19894.
[8] Jiménez-Martínez R, Knappe S, Kitching J. An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening[J]. Review of Scientific Instruments, 2014, 85(4):045124.
[9] Shah V, Romalis M V. Spin-exchange relaxation-free magnetometry using elliptically polarized light[J]. Physical Review A, 2009, 80(1):013416.
[10] Li Z, Wakai R T, Walker T G. Parametric modulation of an atomic magnetometer[J]. Applied Physics Letters, 2006, 89(13):134105.
[11] Fang J C, Wan S G, Qin J, et al. Spin-exchange relaxation-free magnetic gradiometer with dual-beam and closed-loop Faraday modulation[J]. Journal of the Optical Society of America B-Optical Physics, 2014, 31(3):512-516.
[12] 刘强, 李九兴, 黄立明, 等. 用于全光铯原子磁力仪的激光器稳频技术研究[J]. 光学技术, 2012, 38(3):259-262. Liu Qiang, Li Jiuxing, Huang Liming, et al. Study of frequency stabilization of a diode laser at all optical Cs atom magnetometer[J]. Optical Technique, 2012, 38(3):259-262.
[13] Krupke W F, Beach R J, Kanz V K, et al. Resonance transition 795-nm rubidium laser[J]. Optics Letters, 2003, 28(23):2336-2338.
[14] Li Z Y, Tan R Q, Xu C, et al.. Linewidth-tunable laser diode array for rubidium laser pumping[J]. Quantum Electronics, 2013, 43(2):147-149.
[15] Zhdanov B V, Rotondaro M D, Shaffer M K, et al. Efficient potassium diode pumped alkali laser operating in pulsed mode[J]. Optics Express, 2014, 22(14):17266-17270.
[16] Zweiback J, Hager G, Krupke W F. High efficiency hydrocarbon-free resonance transition potas-sium laser[J]. Optics Communications, 2009, 282(9):1871-1873.
[17] 徐程, 谭荣清, 李志永, 等. 半导体抽运铷蒸气输出2.8W线偏振铷激光[J]. 中国激光, 2013, 40(1):0102009. Xu Cheng, Tan Rongqing, Li Zhiyong, et al. 2.8 W linearly polarized output of rubidium vapor laser with diode pumping[J]. Chinese Journal of lasers, 2013, 40(1):0102009.
[18] Page R H, Beach R J, Kanz V K, et al. Multimode-diode-pumped gas (alkali-vapor) laser[J]. Optics Letters, 2006, 31(3):353-355.
[19] Li Z Y, Tan R Q, Huang W, et al.A linearly-polarized cesium vapor laser with fundamental mode output and low threshold[J]. Chinese Physics Letters, 2014, 31(4):044202.
[20] Wang Y, Niigaki Fukuoka M H, Zheng Y, et al.Approaches of output improvement for a cesium vapor laser pumped by a volume-Bragggrating coupled laser-diode-array[J]. Physics Letters A, 2007, 360(4-5):659-663.
[21] Scholtes T, Schultze V, Ijsselsteijn R, et al. Light-narrowed opticallypumped M-x magnetometer with a miniaturized Cs cell[J]. Physical Review A, 2011, 84(4):043416.
[22] Zameroski N D, Hager G D, Rrdolph W, et al. Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112(1):59-67.
[23] Pitz G A, Fox C D, Perram. Pressure broadening and shift of the cesium D2 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He with comparison to the D1 transition[J]. Physical Review A, 2010, 82(4):042502.
[24] Hrycyshyn E S, Krause L. Inelastic collisions between excited alkali atoms and molecules. VⅡ. Sensitized fluorescence and quenching in mixtures of rubidium with H2, HD, D2, N2, CH4, CD4, C2H4, and C2. H6[J]. Canadian Journal of Physics, 1970, 48(22):2761-2768.
[25] Fox C D, Perram G P. Investigation of radial temperature gradients in diode pumped alkali lasers using tunable diode laser absorption spectroscopy[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2012, 8238(1):51-59.
[26] Beach R J, Krupke W F, V. Kanz K, et al. End-pumped continuouswave alkali vapor lasers:Expe-riment, model and power scaling[J]. Journal of the Optical Society of America B-Optical Physics, 2004, 21(12):2151-2163.
[27] Hrycyshy E S, Krause L. Inelastic collisions between excited alkali atoms and molecules 7 sensi-tized fluorescence and quenching in mixtures of rubidium with H2, Hd, D2, N2, Cd4, C2h4, and C2h6[J]. Canadian Journal of Physics, 1970, 48(22):2761-2768.
[28] Zhdanov B V, Knize R J. Efficient diode pumped cesium vapor amplifier[J]. Optics Communications, 2008, 281(15-16):4068-4070.
[29] Zhdanov B V, Knize R J. Diode-pumped 10 W continuous wave cesium laser[J]. Optics Letters, 2007, 32(15):2167-2169.
[30] Petersen A, Lane R. Second harmonic operation of diode-pumped Rb vapor lasers[J]. Proceedings of SPIE, 2008(7005):529.
[31] Sintov Y, Malka D, Zalevsky Z. Prospects for diode-pumped alkali-atom-based hollow-core photonic-crystal fiber lasers[J]. Optics Letters, 2014, 39(16):4655-4658.
[32] Li Z Y, Tan R Q, Xu C, et al. A Linearly-polarized rubidium vapor laser pumped by a tunable laser diode array with an external cavity of a temperature-controlled volume braggg Grating[J]. Chinese Physics Letters, 2013, 30(3):034202.
[33] Zhdanov B V, Rotondaro M D, Shaffer M K, et al. Power degradation due to thermal effects in potassium diode pumped alkali laser[J]. Optics Communications, 2015, 341(0):97-100.
[34] Zheng Y J, Niigaki M, Kan Hirofumi. Efficient operation of a cesiumvapor laser longitudinally pumped by a fine-tunable bandwidthnarrowed laser-diode bar[J]. Japanese Journal of Applied Physics, 2007, 46(12):7768-7770.
[35] Zweiback J, Krupke W F. 28 W average power hydrocarbon-free rubidium diode pumped alkali laser[J]. Optics Express, 2010, 18(2):1444-1449.
[36] Zweiback J, Hager G, Krupke W F. High efficiency hydrocarbon-free resonance transition potas-sium laser[J]. Optics Communications, 2009, 282(9):1871-1873.
[37] 李志永, 谭荣清, 黄伟, 等. 半导体泵浦铯蒸气实现激光输出[J]. 强激光与粒子束, 2014, 26(1):010102. Li Zhiyong, Tan Rongqing, Huang Wei, et al. Diode pumped cesium vapor laser[J]. High Power Laser and Particle Beams, 2014, 26(1):010102.
[38] Zhdanov B V, Stooke, Boyadjian G, et al. Laser diode array pumped continuous wave Rubidium vapor laser[J]. Optics Express, 2008, 16(2):748-751.
[39] Zhdanov B V, Stooke, Boyadjian G, et al. Rubidium vapor laser pumped by two laser diode arrays[J]. Optics Letters, 2008, 33(5):414-415.
[40] Zhdanov B V, Sell J, Knize R J. Multiple laser diode array pumped Cs laser with 48 W output power[J]. Electronics Letters, 2008, 44(9):582-583.
[41] Zweiback J, Komashko A, Krupke W F. Alkali-vapor lasers[C]//SPIE LASE. International Society for Optics and Photonics, San Francisco:SPIE, 2010:75810G-75810G-5.
[42] Li Z Y, Tan R Q, Huang W, et al. Quasicontinuous wave linearly polarized rubidium vapor laser pumped by a 5-bar laser diode stack[J]. Optical Engineering, 2014, 53(11):116113.
[43] Yang J, Shen B L, Qian A Q, et al. Thermal effects of high-power side-pumped alkali vapor lasers and the compensation method[J]. IEEE Journal of Quantum Electronics, 2014, 50(12):1029-1035.
[44] Shaffer M K, Lilly T C, Zhdanov B V, et al. In situ non-perturbative temperature meaurement in a Cs alkali laser[J]. Optics Letters, 2015, 40(1):119-122.
Outlines

/