[1] 刘国斌, 孙献平, 顾思洪, 等. 高灵敏度原子磁力计研究进展[J]. 物理, 2012, 41(12):803-810. Liu Guobin, Sun Xianping, Gu Sihong, et al. Progress in high sensitive atomic magnetometers[J]. Physics, 2012, 41(12):803-810.
[2] Budker D, Romalis M. Optical magnetometry[J]. Nature Physics, 2007, 3(4):227-234.
[3] 董浩斌, 张昌达. 量子磁力仪再评说[J]. 工程地球物理学报, 2010, 7(4):460-470. Dong Haobin, Zhang Changda. A further review of the quantum magnetometers[J]. Chinese Journal of Engineering Geophysics, 2010, 7(4):460-470.
[4] Kominis I K, Kornack T W, Allred J C, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003, 422(6932):596-599.
[5] Zhang J H, Liu Q, Zeng X J, et al. All-optical cesium atomic magnetometer with high sensitivity[J]. Chinese Physics Letters, 2012, 29(6):068501.
[6] Fang J C, Wang T, Quan W, et al. In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect[J]. Review of Scientific Instruments, 2014, 85(6):063108.
[7] Lee H J, Shim J H, Moon H S, et al. Flat-response spin-exchange relaxation free atomic magnetometer under negative feedback[J]. Optics Express, 2014, 22(17):19887-19894.
[8] Jiménez-Martínez R, Knappe S, Kitching J. An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening[J]. Review of Scientific Instruments, 2014, 85(4):045124.
[9] Shah V, Romalis M V. Spin-exchange relaxation-free magnetometry using elliptically polarized light[J]. Physical Review A, 2009, 80(1):013416.
[10] Li Z, Wakai R T, Walker T G. Parametric modulation of an atomic magnetometer[J]. Applied Physics Letters, 2006, 89(13):134105.
[11] Fang J C, Wan S G, Qin J, et al. Spin-exchange relaxation-free magnetic gradiometer with dual-beam and closed-loop Faraday modulation[J]. Journal of the Optical Society of America B-Optical Physics, 2014, 31(3):512-516.
[12] 刘强, 李九兴, 黄立明, 等. 用于全光铯原子磁力仪的激光器稳频技术研究[J]. 光学技术, 2012, 38(3):259-262. Liu Qiang, Li Jiuxing, Huang Liming, et al. Study of frequency stabilization of a diode laser at all optical Cs atom magnetometer[J]. Optical Technique, 2012, 38(3):259-262.
[13] Krupke W F, Beach R J, Kanz V K, et al. Resonance transition 795-nm rubidium laser[J]. Optics Letters, 2003, 28(23):2336-2338.
[14] Li Z Y, Tan R Q, Xu C, et al.. Linewidth-tunable laser diode array for rubidium laser pumping[J]. Quantum Electronics, 2013, 43(2):147-149.
[15] Zhdanov B V, Rotondaro M D, Shaffer M K, et al. Efficient potassium diode pumped alkali laser operating in pulsed mode[J]. Optics Express, 2014, 22(14):17266-17270.
[16] Zweiback J, Hager G, Krupke W F. High efficiency hydrocarbon-free resonance transition potas-sium laser[J]. Optics Communications, 2009, 282(9):1871-1873.
[17] 徐程, 谭荣清, 李志永, 等. 半导体抽运铷蒸气输出2.8W线偏振铷激光[J]. 中国激光, 2013, 40(1):0102009. Xu Cheng, Tan Rongqing, Li Zhiyong, et al. 2.8 W linearly polarized output of rubidium vapor laser with diode pumping[J]. Chinese Journal of lasers, 2013, 40(1):0102009.
[18] Page R H, Beach R J, Kanz V K, et al. Multimode-diode-pumped gas (alkali-vapor) laser[J]. Optics Letters, 2006, 31(3):353-355.
[19] Li Z Y, Tan R Q, Huang W, et al.A linearly-polarized cesium vapor laser with fundamental mode output and low threshold[J]. Chinese Physics Letters, 2014, 31(4):044202.
[20] Wang Y, Niigaki Fukuoka M H, Zheng Y, et al.Approaches of output improvement for a cesium vapor laser pumped by a volume-Bragggrating coupled laser-diode-array[J]. Physics Letters A, 2007, 360(4-5):659-663.
[21] Scholtes T, Schultze V, Ijsselsteijn R, et al. Light-narrowed opticallypumped M-x magnetometer with a miniaturized Cs cell[J]. Physical Review A, 2011, 84(4):043416.
[22] Zameroski N D, Hager G D, Rrdolph W, et al. Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112(1):59-67.
[23] Pitz G A, Fox C D, Perram. Pressure broadening and shift of the cesium D2 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He with comparison to the D1 transition[J]. Physical Review A, 2010, 82(4):042502.
[24] Hrycyshyn E S, Krause L. Inelastic collisions between excited alkali atoms and molecules. VⅡ. Sensitized fluorescence and quenching in mixtures of rubidium with H2, HD, D2, N2, CH4, CD4, C2H4, and C2. H6[J]. Canadian Journal of Physics, 1970, 48(22):2761-2768.
[25] Fox C D, Perram G P. Investigation of radial temperature gradients in diode pumped alkali lasers using tunable diode laser absorption spectroscopy[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2012, 8238(1):51-59.
[26] Beach R J, Krupke W F, V. Kanz K, et al. End-pumped continuouswave alkali vapor lasers:Expe-riment, model and power scaling[J]. Journal of the Optical Society of America B-Optical Physics, 2004, 21(12):2151-2163.
[27] Hrycyshy E S, Krause L. Inelastic collisions between excited alkali atoms and molecules 7 sensi-tized fluorescence and quenching in mixtures of rubidium with H2, Hd, D2, N2, Cd4, C2h4, and C2h6[J]. Canadian Journal of Physics, 1970, 48(22):2761-2768.
[28] Zhdanov B V, Knize R J. Efficient diode pumped cesium vapor amplifier[J]. Optics Communications, 2008, 281(15-16):4068-4070.
[29] Zhdanov B V, Knize R J. Diode-pumped 10 W continuous wave cesium laser[J]. Optics Letters, 2007, 32(15):2167-2169.
[30] Petersen A, Lane R. Second harmonic operation of diode-pumped Rb vapor lasers[J]. Proceedings of SPIE, 2008(7005):529.
[31] Sintov Y, Malka D, Zalevsky Z. Prospects for diode-pumped alkali-atom-based hollow-core photonic-crystal fiber lasers[J]. Optics Letters, 2014, 39(16):4655-4658.
[32] Li Z Y, Tan R Q, Xu C, et al. A Linearly-polarized rubidium vapor laser pumped by a tunable laser diode array with an external cavity of a temperature-controlled volume braggg Grating[J]. Chinese Physics Letters, 2013, 30(3):034202.
[33] Zhdanov B V, Rotondaro M D, Shaffer M K, et al. Power degradation due to thermal effects in potassium diode pumped alkali laser[J]. Optics Communications, 2015, 341(0):97-100.
[34] Zheng Y J, Niigaki M, Kan Hirofumi. Efficient operation of a cesiumvapor laser longitudinally pumped by a fine-tunable bandwidthnarrowed laser-diode bar[J]. Japanese Journal of Applied Physics, 2007, 46(12):7768-7770.
[35] Zweiback J, Krupke W F. 28 W average power hydrocarbon-free rubidium diode pumped alkali laser[J]. Optics Express, 2010, 18(2):1444-1449.
[36] Zweiback J, Hager G, Krupke W F. High efficiency hydrocarbon-free resonance transition potas-sium laser[J]. Optics Communications, 2009, 282(9):1871-1873.
[37] 李志永, 谭荣清, 黄伟, 等. 半导体泵浦铯蒸气实现激光输出[J]. 强激光与粒子束, 2014, 26(1):010102. Li Zhiyong, Tan Rongqing, Huang Wei, et al. Diode pumped cesium vapor laser[J]. High Power Laser and Particle Beams, 2014, 26(1):010102.
[38] Zhdanov B V, Stooke, Boyadjian G, et al. Laser diode array pumped continuous wave Rubidium vapor laser[J]. Optics Express, 2008, 16(2):748-751.
[39] Zhdanov B V, Stooke, Boyadjian G, et al. Rubidium vapor laser pumped by two laser diode arrays[J]. Optics Letters, 2008, 33(5):414-415.
[40] Zhdanov B V, Sell J, Knize R J. Multiple laser diode array pumped Cs laser with 48 W output power[J]. Electronics Letters, 2008, 44(9):582-583.
[41] Zweiback J, Komashko A, Krupke W F. Alkali-vapor lasers[C]//SPIE LASE. International Society for Optics and Photonics, San Francisco:SPIE, 2010:75810G-75810G-5.
[42] Li Z Y, Tan R Q, Huang W, et al. Quasicontinuous wave linearly polarized rubidium vapor laser pumped by a 5-bar laser diode stack[J]. Optical Engineering, 2014, 53(11):116113.
[43] Yang J, Shen B L, Qian A Q, et al. Thermal effects of high-power side-pumped alkali vapor lasers and the compensation method[J]. IEEE Journal of Quantum Electronics, 2014, 50(12):1029-1035.
[44] Shaffer M K, Lilly T C, Zhdanov B V, et al. In situ non-perturbative temperature meaurement in a Cs alkali laser[J]. Optics Letters, 2015, 40(1):119-122.