Articles

Application research of carbon nanotube-based field-effect transistors:A review

  • CHANG Chunrui ,
  • ZHAO Hongwei ,
  • DIAO Jiajia ,
  • AN Libao
Expand
  • 1. College of Science, North China University of Science and Technology, Tangshan 063009, China;
    2. College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063009, China

Received date: 2016-05-03

  Revised date: 2016-08-28

  Online published: 2016-12-28

Abstract

Due to the scaling challenge faced by silicon transistors, carbon nanotube (CNTs), being one-dimensional quantum material, becomes a candidate for future transistors. Carbon nanotube field effect transistors (CNTFETs) can be realized in several geometrical configurations. This paper begins with a survey of typical CNTFET device geometries, the associated basic operating principles, and the unique properties. Then, it focuses on the recent development of several common CNTFETs, and describes in detail a series of technical innovations and performance improvements in terms of. structural and operating principles. Finally, some key problems about CNTFETs to be solved in future are summarized.

Cite this article

CHANG Chunrui , ZHAO Hongwei , DIAO Jiajia , AN Libao . Application research of carbon nanotube-based field-effect transistors:A review[J]. Science & Technology Review, 2016 , 34(23) : 106 -114 . DOI: 10.3981/j.issn.1000-7857.2016.23.011

References

[1] 吕建伟, 王万录, 张毅, 等. 碳纳米管场效应晶体管的研究进展[J]. 材料导报, 2004, 18(s1):91-93. Lü Jianwei, Wang Wanlu, Zhang Yi, et al. Progress in research on field effect transistors made of carbon nanotubes[J]. Materials Review, 2004, 18(s1):91-93.
[2] 周海亮, 赵天磊, 张民选, 等. 碳纳米管场效应管尺寸缩小特性的比较[J]. 国防科技大学学报, 2011, 33(3):77-82. Zhou Hailiang, Zhao Tianlei, Zhang Minxuan, et al. Comparing of the scaling property of carbon nanotube field effect transistors[J]. Journal of National University of Defense Technology, 2011, 33(3):77-82.
[3] 王小羊. 基于量子模型的碳纳米管场效应晶体管电子输运特性[J]. 电子元件与材料, 2015, 34(7):28-30. Wang Xiaoyang. Electron transport properties of carbon nanotube field effect transistor based on quantum model[J]. Electronic Components and Materials, 2015, 34(7):28-30.
[4] Shulaker M M, Rethy J V, Hills G, et al. Sensor-to-digital interface built entirely with carbon nanotube FETs[J]. IEEE Journal of Solid-State Circuits, 2014, 49(1):190-201.
[5] Javey A, Guo J, Wang Q, et al. Ballistic carbon nanotube field-effect transistors[J]. Nature, 2003, 424(6949):654-657.
[6] Koswatta S O, Hasan S, Lundstrom M S, et al. Nonequilibrium green's function treatment of phonon scattering in carbon-nanotube transistors[J]. IEEE Transactions on Electron Devices, 2007, 54(9):2339-2351.
[7] Gullapalli S, Wong M S. Nanotechnology:A guide to nano-objects[J]. Chemical Engineering Progress, 2011, 107(5):28-32.
[8] 许高斌, 陈兴, 周琪, 等. 碳纳米管场效应晶体管设计与应用[J]. 电子测量与仪器学报, 2010, 24(10):969-978. Xu Gaobin, Chen Xing, Zhou Qi, et al. Design and application of carbon nanotube FETs[J]. Journal of Electronic Measurement and Instrument, 2010, 24(10):969-978.
[9] 金铁凝, 陈长鑫, 刘晓东, 等. 基于肖特基接触的碳纳米管场效应晶体管[J]. 微纳电子技术, 2013, 50(4):201-219. Jin Tiening, Chen Changxin, Liu Xiaodong, et al. Carbon nanotube field effect transistors based on schottky contact[J]. Micronanoelectronic Technology, 2013, 50(4):201-219.
[10] Zang X, Zhou Q, Chang J, et al. Graphene and carbon nanotube (CNT) in MEMS/NEMS applications[J]. Microelectronic Engineering, 2015(132):192-206.
[11] Xia M, Cheng Z, Han J, et al. Extremely stretchable all-carbonnanotube transistor on flexible and transparent substrates[J]. Applied Physics Letters, 2014, 105(14):143504.
[12] Kim T H, Lee B Y, Jaworski J, et al. Selective and sensitive TNT sensors using biomimetic polydiacetylene-coated CNT-FETs[J]. ACS Nano, 2011, 5(4):2824-2830.
[13] Kim B, Lee J, Namgung S, et al. DNA sensors based on CNT-FET with floating electrodes[J]. Sensors and Actuators B, 2012(169):182-187.
[14] Tans S J, Verschueren A R M, Dekker C. Room-temperature transistor based on a single carbon nanotube[J]. Nature, 1998, 393(6680):49-52.
[15] Martel R, Schmidt T, Shea H R, et al. Single-and multi-wall carbon nanotube field-effect transistors[J]. Applied Physics Letters, 1998, 73(17):2447-2449.
[16] Jamaa B, Haykel M, Gaillardon P E, et al. FPGA design with doublegate carbon nanotube transistors[J]. Electrochemical Society Transactions, 2011, 34(1):1005-1010.
[17] Hazeghi A, Krishnamohan T, Wong H S P. Schottky-barrier carbon nanotube field-effect transistor modeling[J]. IEEE Transactions on Electron Devices, 2007, 54(3):439-445.
[18] Guo J, Lundstrom M, Datta S. Performance projections for ballistic carbon nanotube field-effect transistors[J]. Applied Physics Letters, 2002, 80(17):3192-3194.
[19] Javey A, Tu R, Farmer D B, et al. High performance n-type carbon nanotube field-effect transistors with chemically doped contacts[J]. Nano Letters, 2005, 5(2):345-348.
[20] Chen N, Klinke C, Afzali A, et al. Self-aligned carbon nanotube transistors with charge transfer doping[J]. Applied Physics Letters, 2005, 86(12):123108(3pp).
[21] Koswatta S O, Nikonov D E, Lundstrom M S. Computational study of carbon nanotube pin tunnel FETs[C]//IEEE InternationalElectron Devices Meeting, 2005. Washington:IEDM Technical Digest. IEEE, 2005:518-521.
[22] Appenzeller J, Martel R, Derycke V, et al. Carbon nanotubes as potential building blocks for future nanoelectronics[J]. Microelectronic Engineering, 2002, 64(1-4):391-397.
[23] Schulz M. The end of the road for silicon?[J]. Nature, 1999, 399(6738):729-730.
[24] 钟汉清, 陈长鑫, 刘晓东, 等. 基于Pd/SWNT/Al结构的场效应晶体管的研究[J]. 半导体光电, 2015, 36(3):435-438. Zhong Hanqing, Chen Changxin, Liu Xiaodong, et al. Study on the field-effect transistor based on pd/swnt/al configuration[J]. Semiconductor Optoelectronics, 2015, 36(3):435-438.
[25] Frégonèse S, Maneux C, Zimmer T. A compact model for dual-gate one-dimensional FET:Application to carbon-nanotube FETs[J]. IEEE Transactions on Electron Devices, 2011, 58(1):206-215.
[26] Wong H S P, Akinwande D. Carbon nanotube and graphene device physics[M]. England:Cambridge University Press, 2011.
[27] Wang H, Chang S, Hu Y, et al. A novel barrier controlled tunnel FET[J]. IEEE Electron Device Letters, 2014, 35(7):798-800.
[28] Franklin A D, Koswatta S O, Farmer D B, et al. Carbon nanotube complementary wrap-gate Transistors[J]. Nano Letter, 2013, 13(6):2490-2495.
[29] Chen C, Xu D, Kong E S, et al. Multichannel carbon-nanotube FETs and complementary logic gates with nanowelded contacts[J]. IEEE Electron Device Letters, 2006, 27(10):852-855.
[30] Chen C, Zhang W, Zhang Y. Multichannel carbon nanotube fieldeffect transistors with compound channel layer[J]. Applied Physics Letters, 2009, 95(19):192110(3pp).
[31] Hu Z, Tulevski G S, Hannon J B, et al. Variability and reliability analysis in self-assembled multichannel carbon nanotube field-effect transistors[J]. Applied Physics Letters, 2015, 106(24):243106(5pp).
[32] Ouyang Y, Guo J. Assessment of carbon nanotube array transistors:A three-dimensional quantum simulation[J]. Solid-State Electronics, 2011, 61(1):18-22.
[33] Hayashi Y, Jang B, Iijima T, et al. Direct growth of horizontally aligned carbon nanotubes between electrodes and its application to field-effect transistors[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(12):11011-11014.
[34] Myodo M, Inaba M, Ohara K, et al. Large-current-controllable carbon nanotube field-effect transistor in electrolyte solution[J]. Applied Physics Letters, 2015, 106(21):207-208.
[35] 刘兴辉, 赵宏亮, 李天宇, 等. 基于异质双栅电极结构提高碳纳米管场效应晶体管电子输运效率[J]. 物理学报, 2013, 62(14):147308-147308 Liu Xinghui, Zhao Hongliang, Li Tianyu, et al. Improvement on the electron transport efficiency of the carbon nanotube field effect transistor device by introducing heterogeneous-dual-metal-gate structure[J]. Acta Physica Sinica, 2013, 62(14):147308-147308.
[36] Li J, Wang Q, Yue W, et al. Integrating carbon nanotubes into silicon by means of vertical carbon nanotube field-effect transistors[J]. Nanoscale, 2014, 6(15):8956-8961.
[37] 龚道辉, 汪鹏君, 康耀鹏. 基于CNFET的单端口三值SRAM单元设计[J]. 电子技术应用, 2016, 42(7):34-37 Gong Daohui, Wang Pengjun, Kang Yaopeng. Design of single-port ternary SRAM cell based on CNFET[J]. Application of Electronic Technique, 2016, 42(7):34-37.
[38] 王谦, 汪鹏君, 龚道辉. 基于CNFET的三值脉冲式D触发器设计[J]. 宁波大学学报(理工版), 2016(1):37-41. Wang Qian, Wang Pengjun, Gong Daohui. Ternary CNFET pulsed D flip-flop:Design[J]. Journal of Ningbo University (Natural Science & Engineering), 2016(1):37-41.
[39] 唐伟童, 汪鹏君, 王谦. 一种CNFET的多位三值比较器设计[J]. 西安电子科技大学学报(自然科学版), 2016(1):139-143. Tang Weitong, Wang Pengjun, Wang Qian. Design of the magnitude ternary comparator of CNFET[J]. Journal of Xidian University, 2016(1):139-143.
[40] Fediai A, Ryndyk D A, Seifert G, et al. Towards an optimal contact metal for CNTFETs[J]. Nanoscale, 2016, 8(19):10240-10251.
Outlines

/