Spescial Issues

Molecular machines: Ultramicro devices at molecular level commentary on the 2016 Nobel Prize in Chemistry

  • DUAN Weili ,
  • CUI Shuxun
Expand
  • Key Labaratory of Advanced Technologies of Material, Southwest Jiaotong University, Chengdu 610031, China

Received date: 2016-11-10

  Revised date: 2016-12-01

  Online published: 2017-02-07

Abstract

The 2016 Nobel Prize in Chemistry has been awarded to three scientists (Jean-Pierre Sauvage, J. Fraser Stoddart and Bernard L. Feringa) for their significant contributions to artificial molecular machines. The origin, development and present status of the field of artificial molecular machines are reviewed. An outlook for the future development in this field is also presented.

Cite this article

DUAN Weili , CUI Shuxun . Molecular machines: Ultramicro devices at molecular level commentary on the 2016 Nobel Prize in Chemistry[J]. Science & Technology Review, 2016 , 34(24) : 34 -38 . DOI: 10.3981/j.issn.1000-7857.2016.24.004

References

[1] Dietrich-Buchecker C O, Sauvage J P, Kintzinger J P. Une nouvelle fa-mille de molecules:Les metallo-catenanes[J]. Tetrahedron Letters, 1983, 24(46):5095-5098.
[2] Sauvage J P. Transition metal-containing rotaxanes and catenanes in motion:Toward molecular machines and motors[J]. Accounts of Chemi-cal Research, 1998, 31(10):611-619.
[3] Anellip P L, Spencer N, Stoddart J F. A molecular shuttle[J]. Journal of The American Chemical Society, 1991, 113(13):5131-5133.
[4] Koumura N, Zijlstra R W, Feringa B L. Light-driven monodirectional molecular rotor[J]. Nature, 1999, 401(6749):152-155.
[5] Badjic J D, Balzani V, Stoddart J F. A Molecular Elevator[J]. Science, 2004, 303(5665):1845-1849.
[6] Liu Y, Flood A H, Stoddart J F. Linear artificial molecular muscles[J]. Journal of the American Chemical Society, 2005, 127(27):9745-9759.
[7] Cheng C Y, Stoddart J F. Wholly synthetic molecular machines[J]. Chemphyschem, 2016, 17(12):1780-1793.
[8] Kassem S, Lee A T, Leigh D A, et al. Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm[J]. Nature Chem-istry, 2016, 8(2):138-143.
[9] Wang J, Feringa B L. Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor[J]. Science, 2011, 331(6023):1429-1432.
[10] Li Q, Fuks G, Giuseppone N. Macroscopic contraction of a gel in-duced by the integrated motion of light-driven molecular motors[J]. Nature Nanotechnology, 2015, 10(2):161-165.
[11] Jimenez M C, Dietrich-Buchecker C, Sauvage J P. Towards synthetic molecular muscles:Contraction and stretching of a linear rotaxane di-mer[J]. Angewandte Chemie International Edition, 2000, 39(18):3284-3287.
[12] Jimenez-Molero M C, Dietrich-Buchecker C, Sauvage J P. Chemically induced contraction and stretching of a linear rotaxane dimer[J]. Chem-istry-A European Journal, 2002, 8(6):1456-1466.
[13] Jimenez-Molero M C, Dietrich-Buchecker C, Sauvage J P. Towards ar-tificial muscles at the nanometric level[J]. Chemical Communications, 2003(14):1613-1616.
[14] Bruns C J, Stoddart J F. Supramolecular polymers:Molecular ma-chines muscle up[J]. Nature Nanotechnology, 2013, 8(1):9-10.
[15] Du G, Moulin E, Giuseppone N. Muscle-like supramolecular poly-mers:Integrated motion from thousands of molecular machines[J]. An-gewandte Chemie International Edition, 2012, 51(50):12504-12508.
[16] Li H, Cheng C Y, Stoddart J F. Relative unidirectional translation in an artificial molecular assembly fueled by light[J]. Journal of the American Chemical Society, 2013, 135(49):18609-18620.
[17] Cheng C Y, McGonigal P R, Stoddart J F. Energetically demanding transport in a supramolecular assembly[J]. Journal of the American Chemical Society, 2014, 136(42):14702-14705.
[18] Ragazzon G, Venturi M, Credi A. Light-powered autonomous and di-rectional molecular motion of a dissipative self-assembling system[J]. Nature Nanotechnology, 2015, 10(1):70-75.
[19] Monnereau C, Ramos P H, Deutman A B C. Porphyrin macrocyclic catalysts for the processive oxidation of polymer substrates[J]. Journal of the American Chemical Society, 2010, 132(5):1529-1531.
[20] Takashima Y, Osaki M, Harada A. Artificial molecular clamp:A novel device for synthetic polymerases[J]. Angewandte Chemie International Edition, 2011, 50(33):7524-7528.
[21] Kudernac T, Ruangsupapichat N, Feringa B L. Electrically driven di-rectional motion of a four-wheeled molecule on a metal surface[J]. Na-ture, 2011, 479(7372):208-211.
[22] Lussis P, Svaldo-Lanero T, Leigh D A. A single synthetic small mole-cule that generates force against a load[J]. Nature Nanotechnology, 2011, 6(9):553-557.
[23] Ma X, Tian H. Bright functional rotaxanes[J]. Chemical Society Re-views, 2010, 39(1):70-80.
[24] Qu D H, Wang Q C, Tian H. A half adder based on a photochemically driven
[2] rotaxane[J]. Angewandte Chemie International Edition, 2005, 44(33):5296-5299.
[25] Guo Z, Zhao P, Zhu W, et al. Intramolecular charge-transfer process based on dicyanomethylene-4H-pyran derivative:an integrated opera-tion of half-subtractor and comparator[J]. The Journal of Physical Chemistry C, 2008, 112(17):7047-7053.
[26] Zhu L, Ma X, Tian H. Effective enhancement of fluorescence signals in rotaxane-doped reversible hydrosol-gel systems[J]. Chemistry, 2007, 13(33):9216-9222.
[27] 许国贺, 李杰, 丁小斌. 基于主客体识别的刺激响应型分子梭[J]. 化学进展, 2015, 27(12):1732-1742. Xu Guohe, Li Jie, Ding Xiaobin. Molecular Shuttles Based on HostGuest Recognition Driven by External-Stimuli[J]. Progress in Chemis-try, 2015, 27(12):1732-1742.
[28] Pan T Z, Liu J Q. Catalysts encapsulated in molecular machines[J]. Chemphyschem, 2016, 17(12):1752-1758.
[29] Cui S, Pang X, Zhang S, et al. Unexpected temperature-dependent sin-gle chain mechanics of poly(N-isopropyl-acrylamide) in water[J]. Langmuir, 2012, 28(11):5151-5157.
[30] Pang X, Wang K, Cui S. Single-chain mechanics of poly(N-isopropylacrylamide) in the water/methanol mixed solvent[J]. Polymer, 2013, 54:3737-3743.
[31] Luo Z, Zhang B, Qian H, et al. Effect of size of solvent molecule on the single-chain mechanics of poly(ethylene glycol):Implications on a novel design of molecular motor[J]. Nanoscale, 2016, 8:17820-17827.
[32] Kay E R, Leigh D A. Rise of the molecular machines[J]. Angewandte Chemie International Edition, 2015, 54(35):10080-10088.
[33] Abendroth J M, Bushuyev O S, Weiss P S. Controlling motion at the nanoscale:Rise of the molecular machines[J]. ACS Nano, 2015, 9(8):7746-7768.
[34] Peplow M. March of the machines[J]. Nature, 2015, 525(7567):18-21.
[35] Balzani V, Venturi M, Credi A. Molecular devices and machines:A journey into the nanoworld[M]. New Jersey:John Wiley & Sons, 2006.
[36] Bruns C J, Stoddart J F. The Nature of the Mechanical Bond:From Molecules to Machines[M]. New Jersey:John Wiley & Sons, 2016.
Outlines

/