[1] Dietrich-Buchecker C O, Sauvage J P, Kintzinger J P. Une nouvelle fa-mille de molecules:Les metallo-catenanes[J]. Tetrahedron Letters, 1983, 24(46):5095-5098.
[2] Sauvage J P. Transition metal-containing rotaxanes and catenanes in motion:Toward molecular machines and motors[J]. Accounts of Chemi-cal Research, 1998, 31(10):611-619.
[3] Anellip P L, Spencer N, Stoddart J F. A molecular shuttle[J]. Journal of The American Chemical Society, 1991, 113(13):5131-5133.
[4] Koumura N, Zijlstra R W, Feringa B L. Light-driven monodirectional molecular rotor[J]. Nature, 1999, 401(6749):152-155.
[5] Badjic J D, Balzani V, Stoddart J F. A Molecular Elevator[J]. Science, 2004, 303(5665):1845-1849.
[6] Liu Y, Flood A H, Stoddart J F. Linear artificial molecular muscles[J]. Journal of the American Chemical Society, 2005, 127(27):9745-9759.
[7] Cheng C Y, Stoddart J F. Wholly synthetic molecular machines[J]. Chemphyschem, 2016, 17(12):1780-1793.
[8] Kassem S, Lee A T, Leigh D A, et al. Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm[J]. Nature Chem-istry, 2016, 8(2):138-143.
[9] Wang J, Feringa B L. Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor[J]. Science, 2011, 331(6023):1429-1432.
[10] Li Q, Fuks G, Giuseppone N. Macroscopic contraction of a gel in-duced by the integrated motion of light-driven molecular motors[J]. Nature Nanotechnology, 2015, 10(2):161-165.
[11] Jimenez M C, Dietrich-Buchecker C, Sauvage J P. Towards synthetic molecular muscles:Contraction and stretching of a linear rotaxane di-mer[J]. Angewandte Chemie International Edition, 2000, 39(18):3284-3287.
[12] Jimenez-Molero M C, Dietrich-Buchecker C, Sauvage J P. Chemically induced contraction and stretching of a linear rotaxane dimer[J]. Chem-istry-A European Journal, 2002, 8(6):1456-1466.
[13] Jimenez-Molero M C, Dietrich-Buchecker C, Sauvage J P. Towards ar-tificial muscles at the nanometric level[J]. Chemical Communications, 2003(14):1613-1616.
[14] Bruns C J, Stoddart J F. Supramolecular polymers:Molecular ma-chines muscle up[J]. Nature Nanotechnology, 2013, 8(1):9-10.
[15] Du G, Moulin E, Giuseppone N. Muscle-like supramolecular poly-mers:Integrated motion from thousands of molecular machines[J]. An-gewandte Chemie International Edition, 2012, 51(50):12504-12508.
[16] Li H, Cheng C Y, Stoddart J F. Relative unidirectional translation in an artificial molecular assembly fueled by light[J]. Journal of the American Chemical Society, 2013, 135(49):18609-18620.
[17] Cheng C Y, McGonigal P R, Stoddart J F. Energetically demanding transport in a supramolecular assembly[J]. Journal of the American Chemical Society, 2014, 136(42):14702-14705.
[18] Ragazzon G, Venturi M, Credi A. Light-powered autonomous and di-rectional molecular motion of a dissipative self-assembling system[J]. Nature Nanotechnology, 2015, 10(1):70-75.
[19] Monnereau C, Ramos P H, Deutman A B C. Porphyrin macrocyclic catalysts for the processive oxidation of polymer substrates[J]. Journal of the American Chemical Society, 2010, 132(5):1529-1531.
[20] Takashima Y, Osaki M, Harada A. Artificial molecular clamp:A novel device for synthetic polymerases[J]. Angewandte Chemie International Edition, 2011, 50(33):7524-7528.
[21] Kudernac T, Ruangsupapichat N, Feringa B L. Electrically driven di-rectional motion of a four-wheeled molecule on a metal surface[J]. Na-ture, 2011, 479(7372):208-211.
[22] Lussis P, Svaldo-Lanero T, Leigh D A. A single synthetic small mole-cule that generates force against a load[J]. Nature Nanotechnology, 2011, 6(9):553-557.
[23] Ma X, Tian H. Bright functional rotaxanes[J]. Chemical Society Re-views, 2010, 39(1):70-80.
[24] Qu D H, Wang Q C, Tian H. A half adder based on a photochemically driven
[2] rotaxane[J]. Angewandte Chemie International Edition, 2005, 44(33):5296-5299.
[25] Guo Z, Zhao P, Zhu W, et al. Intramolecular charge-transfer process based on dicyanomethylene-4H-pyran derivative:an integrated opera-tion of half-subtractor and comparator[J]. The Journal of Physical Chemistry C, 2008, 112(17):7047-7053.
[26] Zhu L, Ma X, Tian H. Effective enhancement of fluorescence signals in rotaxane-doped reversible hydrosol-gel systems[J]. Chemistry, 2007, 13(33):9216-9222.
[27] 许国贺, 李杰, 丁小斌. 基于主客体识别的刺激响应型分子梭[J]. 化学进展, 2015, 27(12):1732-1742. Xu Guohe, Li Jie, Ding Xiaobin. Molecular Shuttles Based on HostGuest Recognition Driven by External-Stimuli[J]. Progress in Chemis-try, 2015, 27(12):1732-1742.
[28] Pan T Z, Liu J Q. Catalysts encapsulated in molecular machines[J]. Chemphyschem, 2016, 17(12):1752-1758.
[29] Cui S, Pang X, Zhang S, et al. Unexpected temperature-dependent sin-gle chain mechanics of poly(N-isopropyl-acrylamide) in water[J]. Langmuir, 2012, 28(11):5151-5157.
[30] Pang X, Wang K, Cui S. Single-chain mechanics of poly(N-isopropylacrylamide) in the water/methanol mixed solvent[J]. Polymer, 2013, 54:3737-3743.
[31] Luo Z, Zhang B, Qian H, et al. Effect of size of solvent molecule on the single-chain mechanics of poly(ethylene glycol):Implications on a novel design of molecular motor[J]. Nanoscale, 2016, 8:17820-17827.
[32] Kay E R, Leigh D A. Rise of the molecular machines[J]. Angewandte Chemie International Edition, 2015, 54(35):10080-10088.
[33] Abendroth J M, Bushuyev O S, Weiss P S. Controlling motion at the nanoscale:Rise of the molecular machines[J]. ACS Nano, 2015, 9(8):7746-7768.
[34] Peplow M. March of the machines[J]. Nature, 2015, 525(7567):18-21.
[35] Balzani V, Venturi M, Credi A. Molecular devices and machines:A journey into the nanoworld[M]. New Jersey:John Wiley & Sons, 2006.
[36] Bruns C J, Stoddart J F. The Nature of the Mechanical Bond:From Molecules to Machines[M]. New Jersey:John Wiley & Sons, 2016.