[1] Baba M, Osumi M, Scott S V, et al. Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome[J]. The Journal of Cell Biology, 1997, 139(7):1687-1695.
[2] Baba M, Takeshige K, Baba N, et al. Ultrastructural analysis of the au-tophagic process in yeast:detection of autophagosomes and their charac-terization[J]. The Journal of Cell Biology, 1994, 124(6):903-913.
[3] Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-de-fective mutants of Saccharomyces cerevisiae[J]. FEBS Letters, 1993(1/2), 333:169-174.
[4] Matsuura A, Tsukada M, Wada Y, et al. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae[J]. Gene, 1997, 192(2):245-250.
[5] Takeshige K, Baba M, Tsuboi S, et al. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction[J]. The Journal of Cell Biology, 1992, 119(2):301-311.
[6] Mizushima N, Sugita H, Yoshimori T, et al. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation sys-tem essential for autophagy[J]. The Journal of Biological Chemistry, 1998, 273(51):33889-33892.
[7] Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after process-ing[J]. The EMBO Journal, 2000, 19(21):5720-5728.
[8] Ichimura Y, Kirisako T, Takao T, et al. A ubiquitin-like system medi-ates protein lipidation[J]. Nature, 2000, 408(6811):488-492.
[9] Mizushima N, Noda T, Yoshimori T, et al. A protein conjugation system essential for autophagy[J]. Nature, 1998, 395(6700):395-398.
[10] Noda T, Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, con-trols autophagy in yeast[J]. The Journal of Biological Chemistry, 1998, 273(7):3963-3966.
[11] Nakatogawa H, Ishii J, Asai E, et al. Atg4 recycles inappropriately lip-idated Atg8 to promote autophagosome biogenesis[J]. Autophagy, 2012, 8(2):177-186.
[12] Nakagawa I, Amano A, Mizushima N, et al. Autophagy defends cells against invading group A Streptococcus[J]. Science, 2004, 306(5698):1037-1040.
[13] Isaka Y, Takabatake Y, Takahashi A, et al. Hyperuricemia-induced inflammasome and kidney diseases. Nephrology, dialysis, transplanta-tion:Official publication of the European Dialysis and Transplant As-sociation-European Renal Association, 2016, 31(6):890-896.
[14] Mao K, Wang K, Zhao M, et al. Two MAPK-signaling pathways are re-quired for mitophagy in Saccharomyces cerevisiae[J]. The Journal of Cell Biology, 2011, 193(4):755-767.
[15] Mao K, Wang K, Liu X, et al. The scaffold protein Atg11 recruits fis-sion machinery to drive selective mitochondria degradation by autopha-gy[J]. Developmental Cell, 2013, 26(1):9-18.
[16] Nair U, Jotwani A, Geng J, et al. SNARE proteins are required for macroautophagy[J]. Cell, 2011, 146(2):290-302.
[17] Liang X H, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1[J]. Nature, 1999, 402:672-676.
[18] Levine B, Kroemer G. Autophagy in the pathogenesis of disease[J]. Cell, 2008, 132(1):27-42.
[19] Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice[J]. Nature, 2006, 441(7095):885-889.
[20] Wild P, Farhan H, McEwan D G, et al. Phosphorylation of the autoph-agy receptor optineurin restricts Salmonella growth[J]. Science, 2011, 333(6039):228-233.
[21] Komatsu M, Waguri S, Koike M, et al. Homeostatic levels of p62 con-trol cytoplasmic inclusion body formation in autophagy-deficient mice[J]. Cell, 2007, 131(6):1149-1163.
[22] Komatsu M, Kurokawa H, Waguri S, et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1[J]. Nature Cell Biology, 2010, 12(3):213-223.
[23] Ichimura Y, Waguri S, Sou Y S, et al. Phosphorylation of p62 acti-vates the Keap1-Nrf2 pathway during selective autophagy[J]. Molecu-lar Cell, 2013, 51(5):618-631.
[24] Zhang Y, Yan L, Zhou Z, et al. SEPA-1 mediates the specific recogni-tion and degradation of P granule components by autophagy in C. ele-gans[J]. Cell, 2009, 136(2):308-321.
[25] Tian Y, Li Z, Hu W, et al. C. elegans screen identifies autophagy genes specific to multicellular organisms[J]. Cell, 2010, 141(6):1042-1055.
[26] Cullup T, Kho A L, Dionisi-Vici C, et al. Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective au-tophagy[J]. Nature Genetics, 2013, 45(1):83-87.
[27] Saitsu H, Nishimura T, Muramatsu K, et al. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood[J]. Nature Genetics, 2013, 45(4):445-449.
[28] Yu L, McPhee C K, Zheng L, et al. Termination of autophagy and ref-ormation of lysosomes regulated by mTOR[J]. Nature, 2010, 465(7300):942-946.
[29] Chen G, Han Z, Feng D, et al. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitoph-agy[J]. Molecular Cell, 2014, 54(3):362-377.
[30] Wang Y, Zhang N, Zhang L, et al. Autophagy regulates chromatin ubiquitination in DNA damage response through elimination of SQSTM1/p62[J]. Molecular Cell, 2016, 63(1):34-48.
[31] Gao C, Cao W, Bao L, et al. Autophagy negatively regulates Wnt sig-nalling by promoting dishevelled degradation[J]. Nature Cell Biology, 2010, 12(8):781-790.
[32] Wang Y, Yu B, Zhao J, et al. Autophagy contributes to leaf starch deg-radation[J]. Plant Cell, 2013, 25(4):1383-1399.
[33] Zhang C S, Lin S C. AMPK promotes autophagy by facilitating mito-chondrial fission[J]. Cell Metabolism, 2016, 23(3):399-401.
[34] Huang R, Xu Y, Wan W, et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation[J]. Molecular Cell, 2015, 57(7):456-466.
[35] Zhao Y G, Zhang H. The Nobel Prize:an appetizer before the feast[J]. Science Bulletin, 2016, 61(22):1711-1714.
[36] Liu Z, Chen P, Gao H, et al. Ubiquitylation of autophagy receptor Op-tineurin by HACE1 activates selective autophagy for tumor suppression[J]. Cancer Cell, 2014, 26(1):106-120.