Spescial Issues

Mechanism of autophagy: Commentary on the 2016 Nobel Prize in Physiology or Medicine

  • YANG Jiao ,
  • HU Ronggui
Expand
  • Shanghai Institute of Biochemistry and Cell Biology;Center for Excellence in Molecular and Cell Sciences, Chinese Academy of Sciences, Shanghai 200031, China

Received date: 2016-10-23

  Revised date: 2016-11-14

  Online published: 2017-02-07

Abstract

The 2016 Nobel Prize in Physiology or Medicine honors Japanese scientist, Yoshinori Ohsumi, whose original work has elucidated the mechanism and physiological function of autophagy. His work helped us understand many physiological processes, for example adaptation to starvation and immune response to infection, and opened a new avenue for the development of therapeutic strategies against autophagy-related maladies. Here we briefly introduce his work about autophagy, the significance of his findings to human health, and related research progress at home and abroad.

Cite this article

YANG Jiao , HU Ronggui . Mechanism of autophagy: Commentary on the 2016 Nobel Prize in Physiology or Medicine[J]. Science & Technology Review, 2016 , 34(24) : 39 -43 . DOI: 10.3981/j.issn.1000-7857.2016.24.005

References

[1] Baba M, Osumi M, Scott S V, et al. Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome[J]. The Journal of Cell Biology, 1997, 139(7):1687-1695.
[2] Baba M, Takeshige K, Baba N, et al. Ultrastructural analysis of the au-tophagic process in yeast:detection of autophagosomes and their charac-terization[J]. The Journal of Cell Biology, 1994, 124(6):903-913.
[3] Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-de-fective mutants of Saccharomyces cerevisiae[J]. FEBS Letters, 1993(1/2), 333:169-174.
[4] Matsuura A, Tsukada M, Wada Y, et al. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae[J]. Gene, 1997, 192(2):245-250.
[5] Takeshige K, Baba M, Tsuboi S, et al. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction[J]. The Journal of Cell Biology, 1992, 119(2):301-311.
[6] Mizushima N, Sugita H, Yoshimori T, et al. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation sys-tem essential for autophagy[J]. The Journal of Biological Chemistry, 1998, 273(51):33889-33892.
[7] Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after process-ing[J]. The EMBO Journal, 2000, 19(21):5720-5728.
[8] Ichimura Y, Kirisako T, Takao T, et al. A ubiquitin-like system medi-ates protein lipidation[J]. Nature, 2000, 408(6811):488-492.
[9] Mizushima N, Noda T, Yoshimori T, et al. A protein conjugation system essential for autophagy[J]. Nature, 1998, 395(6700):395-398.
[10] Noda T, Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, con-trols autophagy in yeast[J]. The Journal of Biological Chemistry, 1998, 273(7):3963-3966.
[11] Nakatogawa H, Ishii J, Asai E, et al. Atg4 recycles inappropriately lip-idated Atg8 to promote autophagosome biogenesis[J]. Autophagy, 2012, 8(2):177-186.
[12] Nakagawa I, Amano A, Mizushima N, et al. Autophagy defends cells against invading group A Streptococcus[J]. Science, 2004, 306(5698):1037-1040.
[13] Isaka Y, Takabatake Y, Takahashi A, et al. Hyperuricemia-induced inflammasome and kidney diseases. Nephrology, dialysis, transplanta-tion:Official publication of the European Dialysis and Transplant As-sociation-European Renal Association, 2016, 31(6):890-896.
[14] Mao K, Wang K, Zhao M, et al. Two MAPK-signaling pathways are re-quired for mitophagy in Saccharomyces cerevisiae[J]. The Journal of Cell Biology, 2011, 193(4):755-767.
[15] Mao K, Wang K, Liu X, et al. The scaffold protein Atg11 recruits fis-sion machinery to drive selective mitochondria degradation by autopha-gy[J]. Developmental Cell, 2013, 26(1):9-18.
[16] Nair U, Jotwani A, Geng J, et al. SNARE proteins are required for macroautophagy[J]. Cell, 2011, 146(2):290-302.
[17] Liang X H, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1[J]. Nature, 1999, 402:672-676.
[18] Levine B, Kroemer G. Autophagy in the pathogenesis of disease[J]. Cell, 2008, 132(1):27-42.
[19] Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice[J]. Nature, 2006, 441(7095):885-889.
[20] Wild P, Farhan H, McEwan D G, et al. Phosphorylation of the autoph-agy receptor optineurin restricts Salmonella growth[J]. Science, 2011, 333(6039):228-233.
[21] Komatsu M, Waguri S, Koike M, et al. Homeostatic levels of p62 con-trol cytoplasmic inclusion body formation in autophagy-deficient mice[J]. Cell, 2007, 131(6):1149-1163.
[22] Komatsu M, Kurokawa H, Waguri S, et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1[J]. Nature Cell Biology, 2010, 12(3):213-223.
[23] Ichimura Y, Waguri S, Sou Y S, et al. Phosphorylation of p62 acti-vates the Keap1-Nrf2 pathway during selective autophagy[J]. Molecu-lar Cell, 2013, 51(5):618-631.
[24] Zhang Y, Yan L, Zhou Z, et al. SEPA-1 mediates the specific recogni-tion and degradation of P granule components by autophagy in C. ele-gans[J]. Cell, 2009, 136(2):308-321.
[25] Tian Y, Li Z, Hu W, et al. C. elegans screen identifies autophagy genes specific to multicellular organisms[J]. Cell, 2010, 141(6):1042-1055.
[26] Cullup T, Kho A L, Dionisi-Vici C, et al. Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective au-tophagy[J]. Nature Genetics, 2013, 45(1):83-87.
[27] Saitsu H, Nishimura T, Muramatsu K, et al. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood[J]. Nature Genetics, 2013, 45(4):445-449.
[28] Yu L, McPhee C K, Zheng L, et al. Termination of autophagy and ref-ormation of lysosomes regulated by mTOR[J]. Nature, 2010, 465(7300):942-946.
[29] Chen G, Han Z, Feng D, et al. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitoph-agy[J]. Molecular Cell, 2014, 54(3):362-377.
[30] Wang Y, Zhang N, Zhang L, et al. Autophagy regulates chromatin ubiquitination in DNA damage response through elimination of SQSTM1/p62[J]. Molecular Cell, 2016, 63(1):34-48.
[31] Gao C, Cao W, Bao L, et al. Autophagy negatively regulates Wnt sig-nalling by promoting dishevelled degradation[J]. Nature Cell Biology, 2010, 12(8):781-790.
[32] Wang Y, Yu B, Zhao J, et al. Autophagy contributes to leaf starch deg-radation[J]. Plant Cell, 2013, 25(4):1383-1399.
[33] Zhang C S, Lin S C. AMPK promotes autophagy by facilitating mito-chondrial fission[J]. Cell Metabolism, 2016, 23(3):399-401.
[34] Huang R, Xu Y, Wan W, et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation[J]. Molecular Cell, 2015, 57(7):456-466.
[35] Zhao Y G, Zhang H. The Nobel Prize:an appetizer before the feast[J]. Science Bulletin, 2016, 61(22):1711-1714.
[36] Liu Z, Chen P, Gao H, et al. Ubiquitylation of autophagy receptor Op-tineurin by HACE1 activates selective autophagy for tumor suppression[J]. Cancer Cell, 2014, 26(1):106-120.
Outlines

/