Spescial Issues

Looking back the hot spots in crop science in 2016

  • LI Tao ,
  • LI Changcheng ,
  • SUN Fayu ,
  • SHI Xuan
  • Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops;Key Laboratory of Plant Functional Genomics of Ministry of Education;Wheat Research Center, Yangzhou University, Yangzhou 225009, China

Received date: 2016-12-25

  Revised date: 2017-01-12

  Online published: 2017-02-16


Crop science is one of the core branches of agricultural sciences, which plays an important role in ensuring national food security and adequate supply of agricultural products, and also in improving efficiency in agricultural production and revolutionizing the current agriculture. In order to understand the frontiers and hot fields in crop science, this paper reviews the progresses in the fields of cultivar improvement, gene cloning, genome editing in rice, corn, wheat, and other crops in 2016, and proposes the future highlights and hotspots in crop science.

Cite this article

LI Tao , LI Changcheng , SUN Fayu , SHI Xuan . Looking back the hot spots in crop science in 2016[J]. Science & Technology Review, 2017 , 35(1) : 78 -85 . DOI: 10.3981/j.issn.1000-7857.2017.01.009


[1] 郑红明. 稻谷产量小幅下降稻米价格震荡走强[EB/OL]. 2016-12-15. http://futures.123.com.cn/show/486-37176.htm.
[2] Wang M, Lu X, Xu G, et al. OsSGL, a novel pleiotropic stress-related gene enhances grain length and yield in rice[J]. Scientific Reports, 2016, doi:10.1038/srep38157.
[3] Wu Y, Wang Y, Mi X F, et al. The QTL GNP1 Encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems[J]. PLoS Genetics, 2016, doi:10.1371/journal.pgen.1006386.eCollection 2016.
[4] Si L, Chen J, Huang X, et al. OsSPL13 controls grain size in cultivated rice[J]. Nature Genetics, 2016, 48(4):447-456.
[5] Wang Y F, Zhang J H, Shi X L, et al. Temperature-sensitive albino gene TCD5, encoding a monooxygenase, affects chloroplast development at low temperatures[J]. Journal of Experimental Botany, 2016, 67(17):5187-5202.
[6] 王曼玲. 亚热带生态所夏新界课题组成功培育高生物量巨型水稻. 2016-12-09. http://www.isa.ac.cn/xwzx/201612/t20161209_4718973.html.
[7] Wu L, Ren D, Hu S, et al. Mutation of OsNaPRT1 in the NAD salvage pathway leads to withered leaf tips in rice[J]. Plant Physiology, 2016, 171(2):1085-1098.
[8] Ren D, Rao Y, Huang L, et al. Fine mapping identifies a new QTL for brown rice rate in rice (Oryza sativa L.)[J]. Rice (NY), 2016, doi:10.1186/s12284-016-0076-7.
[9] Wang R Y, Ning Y S, Shi X T, et al. Immunity to rice blast disease by suppression of effector-triggered necrosis[J]. Current Biology, 2016, 26(18):2399-2411.
[10] You Q, Zhai K, Yang D, et al. An E3 ubiquitin ligase-BAG protein module controls plant innate immunity and broad-spectrum disease resistance[J]. Cell Host & Microbe, 2016, 20(6):758-769.
[11] Zhao Y, Huang J, Wang Z Z, et al. Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(45):12850-12855.
[12] Gui J, Shuai Z, Chang L, et al. OsREM4.1 Interacts with OsSERK1 to coordinate the interlinking between abscisic acid and brassinosteroid signaling in rice[J]. Developmental Cell, 2016, 38(2):201-213.
[13] Hu X, Wang C, Fu Y, et al. Expanding the range of CRISPR/Cas9 genome editing in rice[J]. Molecular Plant, 2016, 9(6):943-945.
[14] Hu X, Wang C, Liu Q, et al. Targeted mutagenesis in rice using CRISPR-Cpf1 system[J]. Journal of Genetics and Genomics, 2016, doi:10.1016/j. jgg.2016.12.001.
[15] Lu Y, Zhu JK. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system[J]. Molecular Plant, 2016, doi:10.1016/j. molp.2016.11.013.
[16] Li J, Meng X, Zong Y, et al. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9[J]. Nature Plants, 2016, 2(10):16139.
[17] Wang Y, Liu F, Ren Y, et al. GOLGI TRANSPORT 1B regulates protein export from the endoplasmic reticulum in rice endosperm cells[J]. Plant Cell, 2016, 28(11):2850-2865.
[18] Zhou H J, Wang L J, Liu G F, et al. Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(45):12844-12849.
[19] 世界双季稻最高产量!超级杂交稻今年创多项世界纪录[EB/OL]. 2016-11-25. http://news.sina.com.cn/o/2016-11-25/doc-ifxyasmv1889744.shtml.
[20] Huang X H, Yang S H, Gong J Y, et al. Genomic architecture of heterosis for yield traits in rice[J]. Nature, 2016, 537(7622):629-633.
[21] Fan Y, Yang J, Mathioni S M, et al. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, doi:10.1073/pnas.1619159114.
[22] Chang Z, Chen Z, Wang N, et al. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49):14145-14150.
[23] 国家统计局. 国家统计局关于2016年粮食产量的公告[EB/OL]. 2016-12-08. http://www.stats.gov.cn/tjsj/zxfb/201612/t20161208_1439012.html.
[24] 中华人民共和国农业部公告第2424号[EB/OL]. 2016-07-18. http://www.seedchina.com.cn/DefaultInfoDetail.aspx?InfoId=2424&TypeId=87.
[25] Li J, Fu J, Chen Y, et al. The U6 biogenesis like 1 plays an important role in maize kernel and seedling development by affecting the 3' end processing of U6 snRNA[J]. Molecular Plant, 2016, doi:10.1016/j.molp.2016.10.016.
[26] Yang J, Ji C, Wu Y R. Divergent transactivation of maize storage protein zein genes by the transcription factors Opaque2 and OHPs[J]. Genetics, 2016, 204(2):581-591.
[27] Zhang Z Y, Yang J, Wu Y R. Transcriptional regulation of zein gene expression in maize through the additive and synergistic action of opaque2, prola-mine-box binding factor, and O2 heterodimerizing proteins[J]. Plant Cell, 2015, 27(4):1162-1172.
[28] Zhang Z Y, Zheng X X, Yang J, et al. Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(39):10842-10847.
[29] Qi J F, Sun G L, Wang L, et al. Oral secretions from Mythimna separata insects specifically induce defence responses in maize as revealed by high-dimensional biological data[J]. Plant Cell and Environment, 2016, 39(8):1749-1766.
[30] Wang X, Wang H, Liu S, et al. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings[J]. Nature Genetics, 2016, 48(10):1233-1241.
[31] Vallebueno-Estrada M, Rodríguez-Arévalo I, Rougon-Cardoso A, et al. The earliest maize from San Marcos Tehuacán is a partial domesticate with genomic evidence of inbreeding[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49):14151-14156.
[32] Ramosmadrigal J, Smith B D, Morenomayar J V, et al. Genome sequence of a 5,310-Year-Old maize cob provides insights into the early stages of maize domestication[J]. Current Biology, 2016, 26(23):3195-3201.
[33] Sosso D, Luo D P, Li Q B, et al. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport[J]. Nature Genetics, 2015, 47(12):1489-1493.
[34] 质优粮源短缺麦市或迎"多事之冬"[EB/OL]. 2016-12-15. http://www.xiaomai.cn/html/news/20161215/404057.html.
[35] 耿爱民, 武利峰, 刘渤, 等. 小麦群体改良过程中蓝矮败的选择技术与技巧[J]. 中国种业, 2016(6):14-17.
[36] Griffiths C A, Sagar R, Geng Y, et al. Chemical intervention in plant sugar signalling increases yield and resilience[J]. Nature, 2016, doi:10.1038/nature20591.
[37] "工厂"里培育小麦新品种[EB/OL]. 2016-04-05. http://www.caas.net.cn/nykjxx/fxyc/269285.shtml.
[38] Zhai S N, Li G Y, Sun Y W, et al. Genetic analysis of phytoene synthase 1(Psy1) gene function and regulation in common wheat[J]. Bmc Plant Biology,2016, doi:10.1186/s12870-016-0916-z.
[39] Guo J, Zhang X L, Hou Y L, et al. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection[J]. Theoretical and Applied Genetics, 2015, 128(11):2301-2316.
[40] Salameh A, Buerstmayr M, Steiner B, et al. Effects of introgression of two QTL for fusarium head blight resistance from Asian spring wheat by markerassisted backcrossing into European winter wheat on fusarium head blight resistance, yield and quality traits[J]. Molecular Breeding, 2011, 28(4):485-494.
[41] Eckard J T, Glover K D, Mergoum M, et al. Multiple Fusarium head blight resistance loci mapped and pyramided onto elite spring wheat Fhb1 back-grounds using an IBD-based linkage approach[J]. Euphytica, 2015, 204(1):63-79.
[42] Mergoum M, Frohberg R C, Stack R W, et al. Registration of "Faller" spring wheat[J]. Journal of Plant Registrations, 2008, 2(3):224-229.
[43] Anderson J A, Wiersma J J, Linkert G L, et al. Registration of "Rollag" spring wheat[J]. Journal of Plant Registrations, 2015, 9(2):201-207.
[44] Rawat N, Pumphrey M O, Liu S X, et al. Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain confer-ring resistance to Fusarium head blight[J]. Nature Genetics, 2016, 48(12):1576-1580.
[45] Bai G H, Kolb F L, Shaner G, et al. Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat[J]. Phytopathology, 1999, 89(4):343-348.
[46] Li T, Zhang D D, Zhou X L, et al. Fusarium head blight resistance loci in a stratified population of wheat landraces and varieties[J]. Euphytica, 2016, 207(3):551-561.
[47] Li T, Bai G H, Wu S Y, et al. Quantitative trait loci for resistance to Fusarium head blight in the Chinese wheat landrace Huangfangzhu[J]. Euphytica, 2012, 185(1):93-102.
[48] Lin F, Kong Z X, Zhu H L, et al. Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419×Wangshuibai population. I. Type II resistance[J]. Theoretical and Applied Genetics, 2004, 109(7):1504-1511.
[49] 李韬, 李磊, 郑飞, 等. 一种鉴定和评价小麦赤霉病扩展抗性的方法:201410654050.1[P]. 2015-01-28.
[50] 李韬, 李嫒嫒, 李磊. 小麦赤霉病:从表型鉴定到抗性改良[J]. 科技导报, 2016, 34(22):75-80.
[51] Guo Q, Han J J, Shan S, et al. DNA-based hybridization chain reaction and biotin-streptavidin signal amplification for sensitive detection of Escherichia coli O157:H7 through ELISA[J]. Biosensors & Bioelectronics, 2016, 86:990-995.
[52] 胡志勇. 油料所油菜含油量育种技术获中国专利优秀奖[EB/OL]. 2016-12-21. http://www.caas.net.cn/ysxw/kyjz/277859.shtml.
[53] Lu X, Li Q T, Xiong Q, et al. The transcriptomic signature of developing soybean seeds reveals the genetic basis of seed trait adaptation during domestication[J]. Plant Journal, 2016, 86(6):530-544.
[54] Jin Y, Liu H, Luo D X, et al. DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways[J]. Nature Communications, 2016, doi:10.1038/ncomms12433.
[55] Zhang T, Zhao Y L, Zhao J H, et al. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen[J]. Nature Plants, 2016, 2(10):16153.
[56] Xiao Y T, Liu K Y, Zhang D D, et al. Resistance to bacillus thuringiensis mediated by an ABC transporter mutation increases susceptibility to toxins from other bacteria in an invasive insect[J]. PLoS Pathogens, 2016, 12(2):e1005450.