Articles

Shock troopers in the age of internet: Wearable medical devices

  • WANG Ling ,
  • ZHAN Penghong ,
  • LIU Wenyong
Expand
  • School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China

Received date: 2016-11-08

  Revised date: 2017-01-03

  Online published: 2017-02-16

Abstract

With the emergence of the mobile medicine, the development of smart sensing technologies and the popularization of the concept of the personalized medicine, the smart wearable devices develop at a high speed in recent years and the wearable medical devices become one of the most promising focuses. This paper reviews the latest development of several key technologies related to wearable medical devices, including the advanced materials technology, the smart sensing technology, the wireless transmission technology, the lowpower circuit design technology, the energy generation and storage technology, and the big data analysis technology. The future developing trend and the possible challenges of this field are also discussed.

Cite this article

WANG Ling , ZHAN Penghong , LIU Wenyong . Shock troopers in the age of internet: Wearable medical devices[J]. Science & Technology Review, 2017 , 35(2) : 12 -18 . DOI: 10.3981/j.issn.1000-7857.2017.02.001

References

[1] 张雨晨, 金心宇, 沈剑峰. 可穿戴健康监测设备现状和技术分析[J]. 医学信息学杂志, 2015(9):1-7.
[2] 周学思, 钟荣华, 王天辉. 柔性传感技术及其在健康医疗领域中的应用[J]. 军事医学, 2015(11):876-880.
[3] Zeng W, Shu L, Li Q, et al. Fiber-based wearable electronics:A review of materials, fabrication, devices, and applications[J]. Advanced Materi-als, 2014, 26(31):5310-5336.
[4] Gimpel S, Mohring U, Muller H, et al. The galvanic and electrochemi-cal modification of textiles[J]. Band und Flecht Industrie, 2003, 40(4):115-120.
[5] Li R Z, Hu A, Zhang T, et al. Direct writing on paper of foldable capac-itive touch pads with silver nanowire inks[J]. Acs Applied Materials & Interfaces, 2014, 6(23):21721-9.
[6] 钱鑫, 苏萌, 李风煜, 等. 柔性可穿戴电子传感器研究进展[J]. 化学学报, 2016, 74(7):565-575.
[7] Chun K Y, Oh Y, Rho J, et al. Highly conductive, printable and stretch-able composite films of carbon nanotubes and silver.[J]. Nature Nano-technology, 2010, 5(12):853-7.
[8] 孙加振, 魏先福, 黄蓓青. 纳米材料在印刷电子中的应用[J]. 网印工业, 2014(7):49-52.
[9] Pola T, Vanhala J. Textile Electrodes in ECG Measurement[C]//Interna-tional Conference on Intelligent Sensors, Sensor Networks and Informa-tion. Melbourne Australia:IEEE Xplore, 2008:635-639.
[10] D-Shirt[EB/OL].[2016-08-15]. http://www.cityzensciences.fr/.
[11] Radiate[EB/OL].[2016-08-15]. http://www.radiateathletics.com.
[12] Hexoskin[EB/OL].[2016-08-15]. http://www.hexoskin.com.
[13] Murkovic I, Steinberg M D, Murkovic B. Sensors in neonatal monitor-ing:Current practice and future trends[J]. Technology and Health Care, 2003, 11(6):399-412.
[14] Zhu Z, Liu T, Li G, et al. Wearable sensor systems for infants[J]. Sen-sors, 2015, 15(2):3721-3749.
[15] Patel S, Park H, Bonato P, et al. A review of wearable sensors and sys-tems with application in rehabilitation[J]. Journal of Neuroengineering and Rehabilitation, 2012, 9(1):21-38.
[16] Chen W, Dols S, Oetomo S B, et al. Monitoring body temperature of newborn infants at neonatal intensive care units using wearable sensors[C]//Proceedings of the Fifth International Conference on Body Area Networks. Corfu, Greece:ACM, 2010:188-194.
[17] Coosemans J, Hermans B, Puers R. Integrating wireless ECG monitor-ing in textiles[J]. Sensors and Actuators A:Physical, 2006, 130:48-53.
[18] Bouwstra S, Chen W, Feijs L, et al. Smart jacket design for neonatal monitoring with wearable sensors[C]//2009 Sixth International Work-shop on Wearable and Implantable Body Sensor Networks. Berkeley, California, United States:IEEE, 2009:162-167.
[19] Chen W, Oetomo S B, Feijs L, et al. Design of an Integrated Sensor Platform for Vital Sign Monitoring of Newborn Infants at Neonatal In-tensive Care Unit[J]. Journal of Healthcare Engineering, 2010, 1(4):535-554.
[20] Pacelli M, Loriga G, Taccini N, et al. Sensing fabrics for monitoring physiological and biomechanical variables:E-textile solutions[C]//Pro-ceedings of the 3rd IEEE-EMBS International Summer School and Symposium on Medical Devices and Biosensors. Boston:IEEE, 2006.
[21] Bandodkar A J, Jia W, Wang J. Tattoo-based wearable electrochemi-cal devices:A review[J]. Electroanalysis, 2015, 27(3):562-572.
[22] 石墨烯腕带[EB/OL].[2016-08-15]. http://www.yidianzixun.com/n/0CmgBZbJ?s=8&appid=xiaomi.
[23] Pang C, Koo J H, Nguyen A, et al. Sensors:Highly skin-conformal mi-crohairy sensor for pulse signal amplification[J]. Advanced Materials, 2015, 27(4):634-640.
[24] Ryu S, Lee P, Chou J B, et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion[J]. Acs Nano, 2015, 9(6):5929-36.
[25] Yick J, Mukherjee B, Ghosal D. Wireless sensor network survey[J]. Computer networks, 2008, 52(12):2292-2330.
[26] Nemati E, Deen M J, Mondal T. A wireless wearable ECG sensor for long-term applications[J]. IEEE Communications Magazine, 2012, 50(1):36-43.
[27] Giddens H, Paul D L, Hilton G S, et al. Influence of body proximity on the efficiency of a wearable textile patch antenna[C]//20126th Eu-ropean Conference on Antennas and Propagation (EUCAP). Prague, The Czech Republic:IEEE, 2012:1353-1357.
[28] Yan S, Soh P J, Vandenbosch G A E. Wearable dual-band composite right/left-handed waveguide textile antenna for WLAN applications[J]. Electronics Letters, 2014, 50(6):424-426.
[29] Patria[EB/OL].[2016-08-15]. http://www.patria.fi/.
[30] Matteo S, Alessandro C. Wearable electronics and smart textiles:A critical review[J]. Sensors, 2014, 14(7):11957-11992.
[31] Kim H, Kim Y, Kwon Y S, et al. A 1.12 mW continuous healthcare monitor chip integrated on a planar fashionable circuit board[C]//2008 IEEE International Solid-State Circuits Conference-Digest of Techni-cal Papers. Philadelphia, United States:IEEE, 2008:150-603.
[32] Lee S K, Kim B H, Yoo H J. Planar fashionable circuit board technolo-gy and its applications[J]. JSTS:Journal of Semiconductor Technology and Science, 2009, 9(3):174-180.
[33] Brand J V D, Kok M D, Koetse M, et al. Flexible and stretchable elec-tronics for wearable health devices[J]. Solid-State Electronics. IEEE, 2015, 113:116-120.
[34] Roundy S, Steingart D, Frechette L, et al. Power sources for wireless sensor networks[C]//European Workshop On Wireless Sensor Net-works. Berlin Heidelberg:Springer, 2004:1-17.
[35] Nishide H, Oyaizu K. Toward flexible batteries[J]. Science, 2008, 319(5864):737-738.
[36] Gilbert J M, Balouchi F. Comparison of energy harvesting systems for wireless sensor networks[J]. International Journal of Automation and Computing, 2008, 5(4):334-347.
[37] Cai X, Hou S, Wu H, et al. All-carbon electrode-based fiber-shaped dye-sensitized solar cells[J]. Physical Chemistry Chemical Physics, 2012, 14(1):125-130.
[38] Thang T V, Chung W Y. High-efficient energy harvester with flexible solar panel for a wearable sensor device[J]. 2016, PP(99):1-1.
[39] Sun H, Yang Z, Chen X, et al. Photovoltaic wire with high efficiency attached onto and detached from a substrate using a magnetic field[J]. Angewandte Chemie International Edition, 2013, 52(32):8276-8280.
[40] Wang Z L. Towards self-powered nanosystems:From nanogenerators to nanopiezotronics[J]. Advanced Functional Materials, 2010, 18(22):3553-3567.
[41] Swallow L M, Luo J K, Siores E, et al. A piezoelectric fibre composite based energy harvesting device for potential wearable applications[J]. Smart Materials and Structures, 2008, 17(2):025017.
[42] Zheng Q, Shi B, Fan F, et al. In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator.[J]. Advanced Materials, 2014, 26(33):5851-6.
[43] Gaura E, Kemp J, Brusey J. Leveraging knowledge from physiological data:On-body heat stress risk prediction with sensor networks[J]. IEEE Transactions on Biomedical Circuits and Systems, 2013, 7(6):861-870.
[44] Sow D, Turaga D S, Schmidt M. Mining of sensor data in healthcare:A survey[M]. Managing and Mining Sensor Data. Berlin Heidelberg:Springer, 2013:459-504.
[45] Banaee H, Ahmed M U, Loutfi A. Data mining for wearable sensors in health monitoring systems:A review of recent trends and challenges[J]. Sensors, 2013, 13(12):17472-500.
[46] Lee K H, Kung S Y, Verma N. Low-energy formulations of support vector machine kernel functions for biomedical sensor applications[J]. Journal of Signal Processing Systems, 2012, 69(3):339-349.
[47] Zhu Y. Automatic detection of anomalies in blood glucose using a ma-chine learning approach[J]. Journal of Communications and Networks, 2011, 13(2):125-131.
[48] Gialelis J, Chondros P, Karadimas D, et al. Identifying chronic disease complications utilizing state of the art data fusion methodologies and signal processing algorithms[C]//International Conference on Wireless Mobile Communication and Healthcare. Berlin Heidelberg:Springer, 2011:256-263.
[49] Yoo I, Alafaireet P, Marinov M, et al. Data mining in healthcare and biomedicine:A survey of the literature[J]. Journal of medical systems, 2012, 36(4):2431-2448.
[50] Karlen W, Mattiussi C, Floreano D. Sleep and wake classification with ECG and respiratory effort signals[J]. IEEE Transactions on Biomedi-cal Circuits and Systems, 2009, 3(2):71-78.
[51] Frantzidis C A, Bratsas C, Klados M A, et al. On the classification of emotional biosignals evoked while viewing affective pictures:An inte-grated data-mining-based approach for healthcare applications[J]. IEEE Transactions on Information Technology in Biomedicine, 2010, 14(2):309-318.
Outlines

/