[1] Teng X F, Zhang Y T, Poon C C Y, et al. Wearable medical systems for p-health[J]. IEEE Reviews in Biomedical Engineering, 2008, 1:62-74.
[2] Poon C C Y, Zhang Y T. Perspectives on high technologies for low-cost healthcare[J]. IEEE Engineering in Medicine and Biology, 2008, 27(5):42-47.
[3] Li Y, Poon C C Y, Zhang Y T. Analog integrated circuits design for pro-cessing physiological signals[J]. IEEE Reviews in Biomedical Engineer-ing, 2010, 3:93-105.
[4] Lasanen K, Kostamovaara J. A 1-V analog CMOS front-end for detect-ing QRS complexes in a cardiac signal[J]. IEEE Transactions on Cir-cuits and Systems I:Regular papers, 2005, 52(12):2584-2594.
[5] Ng K A, Chan P K. A CMOS analog front-end IC for portable EEG/ECG monitoring applications[J]. IEEE Transactions Circuits and Sys-tems I:Regular Papers, 2005, 52(11):2335-2347.
[6] Zhang X Y, Lian Y. A 300 mV 220 nW event-driven ADC with realtime QRS detection for wearable ECG sensors[J]. IEEE Transactions on Biomedical Circuits and Systems, 2014, 8(6):834-843.
[7] Yan L, Harpe P, Pamula V R, et al. A 680 nA ECG acquisition IC for leadless pacemaker applications[J]. IEEE Transactions on Biomedical Circuits and Systems, 2014, 8(6):779-786.
[8] Chiu S W, Wang J H, Chang K H, et al. A fully integrated nose-on-achip for rapid diagnosis of ventilator-associated pneumonia[J]. IEEE Transactions on Biomedical Circuits and Systems, 2014, 8(6):765-778.
[9] Andersson O, Chon K H, Sörnmo L, et al. A 290 mV Sub-ASIC for re-al-time atrial fibrillation detection[J]. IEEE Transactions on Biomedical Circuits and Systems, 2015, 9(3):377-386.
[10] He D D, Sodini C G. A 58 nW ECG ASIC with motion-tolerant heart-beat timing extraction for wearable cardiovascular monitoring[J]. IEEE Transactions on Biomedical Circuits and Systems, 2015, 9(3):370-376.
[11] Roh T, Hong S J, Cho H, et al. A 259.6 uW HRV-EEG processor with nonlinear chaotic analysis during mental tasks[J]. IEEE Transac-tions on Biomedical Circuits and Systems, 2016, 10(1):209-218.
[12] Corbishley P, Rodriguez-Villegas E. A nanopower bandpass filter for detection of an acoustic signal in a wearable breathing detector[J]. IEEE Transactions on Biomedical Circuits and Systems, 2007, 1(3):163-171.
[13] Wei C L, Lin Y C, Chen T A, et al. Respiration detection chip with in-tegrated temperature-insensitive MEMS sensors and CMOS signal pro-cessing circuits[J]. IEEE Transactions on Biomedical Circuits and Sys-tems, 2015, 9(1):105-112.
[14] Wong A K Y, Leung K N, Pun K P, et al. A 0.5 Hz high-pass cutoff dual-loop transimpedance amplifier for wearable NIR sensing device[J]. IEEE Transactions on Circuits and Systems II:Express briefs, 2010, 57(7):531-535.
[15] Wang L, Poon C C Y, Zhang Y T. The non-invasive and continuous estimation of cardiac output using photoplethysmogram and electrocar-diogram during incremental exercise[J]. Physiological Measurement, 2010, 31(5):715-726.
[16] Li Y, Wong A K Y, Zhang Y T. A fully-integrated transimpedance am-plifier for photoplethysmographic signal processing with two-stage Miller capacitance multiplier[J]. Electronics Letters, 2010, 46(11):745-746.
[17] Wong A K Y, Pun K P, Zhang Y T, et al. A near-infrared heart rate measurement IC with very low cutoff frequency using current steering technique[J]. IEEE Transactions Circuits and Systems I, 2005, 52(12):2642-2647.
[18] Winokur E S, O'Dwyer T, Sodini C G. A Low-power, dual-wavelength Photoplethysmogram (PPG) SoC with static and time-varying interfer-er removal[J]. IEEE Transactions on Biomedical Circuits and Systems, 2015, 9(4):581-589.
[19] Zou X D, Xu X Y, Yao L B, et al. A 1 V 450 nW fully integrated pro-grammable biomedical sensor interface chip[J]. IEEE Journal of SolidState Circuits, 2009, 44(4):1067-1077.
[20] Teng S L, Rieger R, Lin Y B. Programmable ExG biopotential frontend IC for wearable applications[J]. IEEE Transactions on Biomedical Circuits and Systems, 2014, 8(4):543-551.
[21] Wang C C, Huang C C, Liou J Z, et al. A mini-invasive long-term bladder urine pressure measurement ASIC and system[J]. IEEE Trans-actions Biomedical Circuits and Systems, 2008, 2(1):44-49.
[22] Xu F, Yan G Z, Zhao K, et al. A wireless capsule system with ASIC for monitoring the physiological signals of the human gastrointestinal tract[J]. IEEE Transactions on Biomedical Circuits and Systems, 2014, 8(6):871-880.
[23] Harrison R R, Charles C. A low-power low-noise CMOS amplifier for neural recording applications[J]. IEEE Journal of Solid-State Circuits, 2003, 38(6):958-965.
[24] P Mohseni, Najafi K. A fully integrated neural recording amplifier with DC input stabilization[J]. IEEE Transactions Biomedical Engi-neering, 2004, 51(12):832-837.
[25] Uranga A, Navarro X, Barniol N. Integrated CMOS amplifier for ENG signal recording[J]. IEEE Transactions Biomedical Engineering, 2004, 51(12):2188-2194.
[26] Chan C H, Wills J, LaCoss J, et al. A micro-power low-noise auto-ze-roing CMOS amplifier for cortical neural prostheses[C]//IEEE Biomedi-cal Circuits and Systems Conference. London, UK:IEEE, 2006, 214-217.
[27] Denison T, Consoer K, Santa W, et al. A 2μW 100 nV/rtHz chopperstabilized instrumentation amplifier for chronic measurement of neural field potentials[J]. IEEE Journal of Solid-State Circuits, 2007, 42(12):2934-2945.
[28] Denison T, Consoer K, Kelly A, et al. A 2.2 uW 94 nV/Hz, chopperstabilized instrumentation amplifier for EEG detection in chronic im-plants[C]//IEEE International Solid-State Circuits Conference. San Francisco, USA:IEEE, 2007, 162-594.
[29] Harrison R R, Watkins P T, Kier R J, et al. A low-power integrated circuit for a wireless 100-electrode neural recording system[J]. IEEE Journal of Solid-State Circuits, 2007, 42(1):123-133.
[30] Yazicioglu R F, Merken P, Puers R, et al. A 200μW eight-channel EEG acquisition ASIC for ambulatory EEG systems[J]. IEEE Journal of Solid-State Circuits, 2008, 43(12):3025-3038.
[31] Sodagar A M, Perlin G E, Yao Y, et al. An implantable 64-channel wireless microsystem for single-unit neural recording[J]. IEEE Journal of Solid-State Circuits, 2009, 44(9):2591-2604.
[32] Mohsen J, Sodagar A M, Lotfi R, et al. Nonlinear signal-specific ADC for efficient neural recording in brain-machine interfaces[J]. IEEE Transactions on Biomedical Circuits and Systems, 2014, 8(3):371-381.
[33] Germanovix W, Toumazou C. Design of a micropower current-mode log-domain analog cochlear implant[J]. IEEE Transactions Circuits and Systems II:Analog and Digital Signal Processing, 2000, 47(10):1023-1046.
[34] Sarpeshkar R, Salthouse C, Sit J J, et al. An ultra-low-power program-mable analog bionic ear processor[J]. IEEE Transactions Biomedical Engineering, 2005, 52(4):711-727.
[35] Salthouse C D, Sarpeshkar R. A practical micropower programmable bandpass filter for use in bionic ears[J]. IEEE Journal of Solid-State Circuits, 2003, 38(1):63-70.
[36] Georgiou P, Toumazou C. A silicon pancreatic beta cell for diabetes[J]. IEEE Transactions Biomedical Circuits and Systems, 2007, 1(1):39-49.
[37] Pagkalos I, Herrero P, Toumazou C, et al. Bio-inspired glucose con-trol in diabetes based on an analogue implementation of a β-cell mod-el[J]. IEEE Transactions on Biomedical Circuits and Systems, 2014, 8(2):186-195.
[38] Gerosa A, Maniero A, Neviani A. A fully integrated dual-channel logdomain programmable preamplifier and filter for an implantable cardi-ac pacemaker[J]. IEEE Transactions Circuits and Systems I:Regular Papers, 2004, 51(10):1916-1925.
[39] Wong L S Y, Hossain S, Ta A, et al. A very low-power CMOS mixedsignal IC for implantable pacemaker applications[J]. IEEE Journal of Solid-State Circuits, 2004, 39(12):2446-2456.