Field observations on wind-blown sand/dust storm and high Reynolds wall turbulence

  • WANG Ping
  • Key Laboratory of Mechanics on Disaster and Environment in Western China;Ministry of Education, Lanzhou University, Lanzhou 730000, China

Received date: 2016-12-20

  Revised date: 2017-01-31

  Online published: 2017-02-21


Wind-blown sand and dust storm are typical gas-solid two phase flow occur in high Reynolds atmospheric boundary layer turbulence. Better understanding, accurate prediction and effective controlling of wind-blown sand and dust storm all rely on knowledges of sand/dust particle movement, and therefore on the research results on high Reynolds wall turbulence:The driving force of particle movement. After a briefly review on high Reynolds wall turbulence and sand/dust storm researches, the Qingtu Lake Observation Array (QLOA) established in Minqin county was introduced in detail. Preliminary results achieved in the light of observed data and outlook were described.

Cite this article

WANG Ping . Field observations on wind-blown sand/dust storm and high Reynolds wall turbulence[J]. Science & Technology Review, 2017 , 35(3) : 37 -42 . DOI: 10.3981/j.issn.1000-7857.2017.03.003


[1] Marusic I, Mckeon B J, Monkewitz P A, et al. Wall-bounded turbulent flows at high Reynolds numbers:Recent advances and key issues[J]. Physics of Fluids, 2010, 22(6):1-58.
[2] 王式功, 董光荣, 陈惠忠,等. 沙尘暴研究的进展[J]. 中国沙漠, 2000, 20(4):349-356.
[3] 史培军, 王一谋. 我国沙尘暴灾害及其研究进展与展望[J]. 自然灾害学报, 2000, 9(3):71-77.
[4] 国家中长期科学和技术发展规划纲要(2006-2020年)[EB/OL].[2016-12-31].
[5] 全国防沙治沙规划(2011-2020年)[EB/OL].[2016-12-31].
[6] Schlichting H, Gersten K. Boundary layer theory[M]. Berlin Heidelberg:Springer, 2000.
[7] Klewicki J C. Reynolds number dependence, scaling, and dynamics of turbulent boundary layers[J]. Journal of Fluids Engineering, 2010, 132(9):094001.
[8] Bailey S C C, Vallikivi M, Hultmark M, et al. Estimating the value of von Kármán's constant in turbulent pipe flow[J]. Journal of Fluid Me-chanics, 2014, 749:79-98.
[9] Chauhan K A, Nagib H M, Monkewitz P A. Evidence on non-universal-ity of Karman constant[J]. Progress in Turbulence II, 2007, 109:159-163.
[10] Zanoun E S, Durst F, Nagib H. Evaluating the law of the wall in twodimensional fully developed turbulent channel flows[J]. Physics of Flu-ids, 2003, 15(10):3079-3089.
[11] Monty J P. Developments in smooth wall turbulent duct flows[D]. Uni-versity of Melbourne, Department of Mechanical and Manufacturing Engineering, 2005.
[12] Pope S B. Turbulent flows[M]. Oxford:Cambridge University Press, 2000.
[13] Zagarola M V, Smits A J. Mean-flow scaling of turbulent pipe flow[J]. Journal of Fluid Mechanics, 1998, 373(1):33-79.
[14] McKeon B J, Li J, Jiang W, Morrison J F, et al. Further observations on the mean velocity distribution in fully developed pipe flow[J]. Jour-nal of Fluid Mechanics, 2004, 501:135-147
[15] Nagib H M, Chauhan K A, Monkewitz P A. Approach to an Asymptot-ic State for Zero Pressure Gradient Turbulent Boundary Layers[J]. Philosophical Transactions, 2007, 365(1852):755-770.
[16] Jimenez J, Moser R D. What are we learning from simulating wall tur-bulence?[J]. Philosophical Transactions of the Royal Society A-Math-ematical Physical and Engineering Sciences, 2007, 365(1852):715-732.
[17] Marusic I, Kunkel G J. Streamwise turbulence intensity formulation for flat-plate boundary layers[J]. Physics of Fluids, 2003, 15(8):2461-2464.
[18] Hoyas S, Jimenez J. Scaling of the velocity fluctuations in turbulent channels up to Reτ=2003[J]. Physics of Fluids, 2006, 18(1):L41.
[19] Zhou J, Adrian R, Balachandar S, Kendall T. Mechanisms for generat-ing coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics, 1999, 387(1):353-396.
[20] Balakumar B J, Adrian R J. Large-and very-large-scale motions in channel and boundary-layer flows[J]. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Scienc-es, 2007, 365(1852):665-681.
[21] Guala M, Hommema S E, Adrian R J. Large-scale and very-largescale motions in turbulent pipe flow[J]. Journal of Fluid Mechanics, 2006, 554:521-542.
[22] Hutchins N, Marusic I. Large-scale influences in near-wall turbulence[J]. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 2007, 365(1852):647-664.
[23] Monty J P, Chong M S. Turbulent channel flow:comparison of stream-wise velocity data from experiments and direct numerical simulation[J]. Journal of Fluid Mechanics, 2009, 633:461-474.
[24] Mathis R, Hutchins N, Marusic I. Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers[J]. Journal of Fluid Mechanics, 2009, 628:311-337.
[25] Panton R L. Overview of the self-sustaining mechanisms of wall turbu-lence[J]. Progress in Aerospace Sciences, 2001, 37(4):341-383.
[26] Smits A, McKeon B, Marusic I. High-Reynolds number wall turbu-lence[J]. Annual Review of Fluid Mechanics, 2011, 43(1):353-375.
[27] George W K. Is there a universal log law for turbulent wall-bounded flows?[J]. Philosophical Transactions of the Royal Society A-Mathe-matical Physical & Engineering Sciences, 2007, 365(365):789-806.
[28] Mathis R, Marusic I, Chernyshenko S I, et al. Estimating wall-shearstress fluctuations given an outer region input[J]. Journal of Fluid Me-chanics, 2013, 715(1):163-180.
[29] Bagnold R A. The physics of blown sand and desert dune[M]. London:Methuen, 1941.
[30] Owen P R. Saltation of uniform grains in air[J]. Journal of Fluid Me-chanics, 1964, 20(2):225-242.
[31] White B R. Soil transport by winds on Mars[J]. Journal of Geophysical Research, 1979, 4(B9):4643-4651.
[32] Ungar J E, Haff P K. Steady-state saltation in air[J]. Sedimentology, 1987, 34(2):289-299
[33] Sauermann G, Kroy K, Herrmann H J. A continuum saltation model for sand dunes[J]. Physics Review E, 2001, 64:031305.
[34] Zheng X J. Mechanics of Wind-blown Sand Movements[M]. Berlin Heidelberg:Springer, 2009.
[35] Zheng X J, Huang N, Zhou Y. Laboratory measurement of electrifica-tion of wind-blown sands and simulation of its effect on sand saltation movement[J]. Journal of Geophysical Research Atmospheres, 2003, 108(D10):231-231.
[36] Zheng X J, Huang N, Zhou Y H. The effect of electrostatic force on the evolution of sand saltation cloud[J]. The European Physical Jour-nal E, 2006, 19:129-138.
[37] Bo T L, Zheng X J. The formation and evolution of aeolian dune fields under unidirectional wind[J]. Geomorphology, 2011, 134(3):408-416.
[38] 姜金荣, 张小曳, 迟学斌, 等. 沙尘暴数值预报模式CUACE-Dust的并行与优化[J]. 华中科技大学学报(自然科学版), 2010(增1):52-55.
[39] 李耀辉, 赵建华, 薛纪善,等. 基于GRAPES的西北地区沙尘暴数值预报模式及其应用研究[J]. 地球科学进展, 2005, 20(9):999-1011.
[40] Lu H, Shao Y. Toward quantitative prediction of dust storms:an inte-grated wind erosion modelling system and its applications[J]. Environ-mental Modelling & Software, 2001, 16(3):233-249.
[41] Shao Y. Physics and modeling of wind erosion[M]. Boston:Kluwer Ac-ademic Publishers, 2000.
[42] Schlatter P, Örlü R. Assessment of direct numerical simulation data of turbulent boundary layers[J]. Indian Journal of Pediatrics, 2010, 659(4):116-126.
[43] Mollinger A M, Nieuwstadt F T M. Measurement of the lift force on a particle fixed to the wall in the viscous sublayer of a fully developed turbulent boundary layer[J]. Journal of Fluid Mechanics, 1996, 316:285-306.
[44] Leenders J K, van Boxel J H, Sterk G. Wind forces and related salta-tion transport[J]. Geomorphology, 2005, 71:357-372.
[45] Baas A C W. Wavelet power spectra of aeolian sand transport by boundary layer turbulence[J]. Geophysical research letters, 2006, 33(5):L05403.
[46] Zeng Q, Cheng X, Hu F, et al. Gustiness and coherent structure of strong winds and their role in dust emission and entrainment[J]. Ad-vances in atmospheric sciences, 2010, 27(1):1-13.
[47] Jacob C, Anderson W. Conditionally averaged large-scale motions in the neutral atmospheric boundary layer:insights for aeolian processes[J]. Boundary-Layer Meteorology, 2017, 162(1):21-41..
[48] Hultmark, Marcus. A theory for the streamwise turbulent fluctuations in high Reynolds number pipe flow[J]. Journal of Fluid Mechanics, 2012, 707(3):575-584.
[49] Vallikivi M, Ganapathisubramani B, Smits A. Spectral scaling in boundary layers and pipes at very high Reynolds numbers[J]. Journal of Fluid Mechanics, 2015, 771:303-326.
[50] Vincenti P, Klewicki J, Morrill-Winter C, et al. Streamwise velocity statistics in turbulent boundary layers that spatially develop to high Reynolds number[J]. Experiments in Fluids, 2013, 54(12):1629.
[51] Squire D T, Morrill-Winter C, Hutchins N, et al. Comparison of turbu-lent boundary layers over smooth and rough surfaces up to high Reyn-olds numbers[J]. Journal of Fluid Mechanics, 2016, 795:210-240.
[52] Winkel E S, Cutbirth J M, Ceccio S L, et al. Turbulence profiles from a smooth flat-plate turbulent boundary layer at high Reynolds number[J]. Experimental Thermal & Fluid Science, 2012, 40(40):140-149.
[53] Schultz M P, Flack K A. Reynolds-number scaling of turbulent chan-nel flow[J]. Physics of Fluids, 2013, 25(2):011702-159.
[54] Ahn J, Lee J H, Jin L, et al. Direct numerical simulation of a 30R long turbulent pipe flow at Reτ=3008[J]. Physics of Fluids, 2015, 27(6):065110.
[55] Sillero J A, Jiménez J, Moser R D. One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to δ+≈2000[J]. Physics of Fluids, 2013, 25(10):5102.
[56] Schlatter P, Örlü R. Turbulent boundary layers at moderate Reynolds numbers:inflow length and tripping effects[J]. Journal of Fluid Me-chanics, 2012, 710(5):5-34.
[57] Lee M, Malaya N, Moser R D. Direct numerical simulation of turbu-lent channel flow up to Reτ≈5200[J]. Journal of Fluid Mechanics, 2015, 774(4):395-415.
[58] Hutchins N, Chauhan K, Marusic I, et al. Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory[J]. Boundary-Layer Meteorology, 2012, 145(2):273-306.
[59] Wang G H, Zheng X J. Very large scale motions in the atmospheric surfacelayer:A field investigation[J]. Journal of Fluid Mechanics, 2016, 802:464-489.
[60] 兰州大学举办"高雷诺数湍流国际研讨会"[EB/OL]. (2016-10-14).