[1] Bonan G B. Forests and climate change:Forcings, feedbacks, and the climate benefits of forests[J]. Science, 2008, 320(5882):1444-1449.
[2] Arya S P. Introduction to micrometeorology[M]. 2nd ed. California:Aca-demic Press, 2001.
[3] 季劲钧, 苗曼倩. 不均匀植被分布对地表面和大气边界层影响的数值试验[J]. 大气科学, 1994, 18(3):293-302. Ji Jinjun, Miao Manqian. Atmospheric Science[J]. Chinese Journal of At-mospheric Sciences, 1994, 18(3):293-302.
[4] Baldocchi D, Falge E, Gu L, et al. Fluxnet:A new tool to study the tem-poral and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities[J]. Bulletin of the American Meteorolog-ical Society, 2001, 82(11):2415-2434.
[5] Patton E, Horst T, Sullivan P, et al. The canopy horizontal array turbu-lence study[J]. Bulletin of the American Meteorological Society, 2011, 92(5):593-611.
[6] Kaimal J C, Finnigan J J. Atmospheric boundary layer flows:Their structure and measurement[M]. New York:Oxford University Press, 1994.
[7] Fernando H J S. Fluid dynamics of urban atmospheres in complex ter-rain[J]. Annual Review of Fluid Mechanics, 2009, 42(1):365-389.
[8] 尹协远. 关于植被中湍流的研究[J]. 力学进展, 1991, 25(4):444-456. Yin Xieyuan. Studies on turbulence in vegetation[J]. Advances in Me-chanics, 1991, 25(4):444-456.
[9] Finnigan J. Turbulence in plant canopies[J]. Annual Review of Fluid Mechanics, 2000, 32(1):519-571.
[10] Lee S H. Further development of the vegetated urban canopy model in-cluding a grass-covered surface parametrization and photosynthesis ef-fects[J]. Boundary-Layer Meteorology, 2011, 140(2):315-342.
[11] Nepf H M. Flow and transport in regions with aquatic vegetation[J]. Annual Review of Fluid Mechanics, 2012, 44(1):123-142.
[12] Belcher S E, Harman I N, Finnigan J J. The wind in the willows:Flows in forest canopies in complex terrain[J]. Annual Review of Fluid Mechanics, 2012, 44(1):479-504.
[13] 赵鸣. 大气边界层动力学[M]. 北京:高等教育出版社, 2006:203-208. Zhao Ming. Dynamics of atmospheric boundary layer[M]. Beijing:High-er Education Press, 2006:203-208.
[14] Bonan G B. Ecological climatology[M]. 2nd ed. Cambridge:Cambridge University Press, 2008.
[15] Harman I, Finnigan J. A simple unified theory for flow in the canopy and roughness sublayer[J]. Boundary-Layer Meteorology, 2007, 123(2):339-363.
[16] Harman I, Finnigan J. Scalar Concentration profiles in the canopy and roughness sublayer[J]. Boundary-Layer Meteorology, 2008, 129(3):323-351.
[17] Poggi D, Porporato A, Ridolfi L, et al. The effect of vegetation density on canopy sub layer turbulence[J]. Boundary-Layer Meteorology, 2004, 111(3):565-587.
[18] Haverd V, Böhm M, Raupach M. The effect of source distribution on bulk scalar transfer between a rough land surface and the atmosphere[J]. Boundary-Layer Meteorology, 2010, 135(3):351-368.
[19] Finnigan J, Shaw R, Patton E. Turbulence structure above a vegetation canopy[J]. Journal of Fluid Mechanics, 2009, 637(20):387-424.
[20] Pan Y, Chamecki M, Isard S A. Large eddy simulation of turbulence and particle dispersion inside the canopy roughness sublayer[J]. Jour-nal of Fluid Mechanics, 2014, 753(16):499-534.
[21] Brunet Y, Finnigan J J, Raupach M R. A wind tunnel study of air flow in waving wheat:Single point velocity statistics[J]. Boundary-Layer Meteorology, 1994, 70(1):95-132.
[22] Böhm M, Finnigan J J, Raupach M R, et al. Turbulence structure with-in and above a canopy of bluff elements[J]. Boundary-Layer Meteorolo-gy, 2013, 146(3):393-419.
[23] Aumond P, Masson V, Lax C, et al. Including the drag effects of cano-pies:Real case large-eddy simulation studies[J]. Boundary-Layer Me-teorology, 2013, 146(1):65-80.
[24] Shaw R H, Schumann U. Large-eddy simulation of turbulent flow above and within a forest[J]. Boundary-Layer Meteorology, 1992, 61(1):47-64.
[25] Raupach M R, Finnigan J J, Brunet Y. Coherent eddies and turbu-lence in vegetation canopies:The mixing-layer analogy[J]. BoundaryLayer Meteorology, 1996, 78(3):351-382.
[26] Miao S G, Jiang W M. Large eddy simulation of turbulent flow in a for-est canopy and the forest boundary layer[J]. Chinese Journal of Geo-physics, 2004, 47(4):682-690.
[27] Dupont S, Brunet Y. Influence of foliar density profile on canopy flow:A large-eddy simulation study[J]. Agricultural and Forest Meteorology, 2008, 148(6):976-990.
[28] Huang J, Cassiani M, Albertson J D. The effects of vegetation density on coherent turbulent structures within the canopy sublayer:A largeeddy simulation study[J]. Boundary-Layer Meteorology, 2009, 133(2):253-275.
[29] Schlegel F, Stiller J, Bienert A, et al. Large-eddy simulation of inho-mogeneous canopy flows using high resolution terrestrial laser scan-ning data[J]. Boundary-Layer Meteorology, 2012, 142(2):223-243.
[30] Schlegel F, Stiller J, Bienert A, et al. Large-eddy simulation study of the effects on flow of a heterogeneous forest at sub-tree resolution[J]. Boundary-Layer Meteorology, 2015, 154(1):27-56.
[31] Bailey B, Stoll R. Turbulence in sparse, organized vegetative canopies:A large-eddy simulation study[J]. Boundary-Layer Meteorology, 2013, 147(3):369-400.
[32] Cassiani M, Katul G G, Albertson J D. The effects of canopy leaf area index on airflow across forest edges:Large-eddy simulation and analyt-ical results[J]. Boundary-Layer Meteorology, 2008, 126(3):433-460.
[33] Dupont S, Brunet Y. Coherent structures in canopy edge flow:A largeeddy simulation study[J]. Journal of Fluid Mechanics, 2009, 630(13):93-128.
[34] Finnigan J J, Belcher S E. Flow over a hill covered with a plant cano-py[J]. Quarterly Journal of the Royal Meteorological Society, 2004, 130(596):1-29.
[35] Dupont S, Brunet Y, Finnigan J J. Large-eddy simulation of turbulent flow over a forested hill:Validation and coherent structure identifica-tion[J]. Quarterly Journal of the Royal Meteorological Society, 2008, 134(636):1911-1929.
[36] Yue W, Parlange M, Meneveau C, et al. Large-eddy simulation of plant canopy flows using plant-scale representation[J]. Boundary-Lay-er Meteorology, 2007, 124(2):183-203.