Spescial Issues

Sedimentary property and the geological significance of travertines in Qinghai-Tibetan Plateau

  • NIU Xinsheng ,
  • ZHENG Mianping ,
  • LIU Xifang ,
  • QI Lujing
Expand
  • 1. MLR Key Laboratory of Saline Lake Resources and Environment, Institute of Mineral Resources, CAGS, Beijing 100037, China;
    2. Institute of Disaster Prevention, Sanhe 065201, China

Received date: 2016-11-20

  Revised date: 2016-12-26

  Online published: 2017-03-30

Abstract

The Travertines may be divided into two groups, the meteogene travertines and the thermogene travertines, with not only a landscape value, but also a scientific research value. We have a wide distribution of the travertines in the Qinghai-Tibetan Plateau, mainly in springs and in the lacustrine environment. The formation of travertines is related with the hydrothermal activity in the interior of the Qinghai-Tibetan Plateau, controlled by the crust extensional activity caused by the subduction of the Indian continent and the strike-slip pull-apart process of regional faults. The travertines provide records of the paleoclimatic information and the ore-forming processes of the saline lake deposits. However, a good interpretation of the information of travetines remains a research issue. Generally, the carrier CO2 of the thermogene travertines originates from the thermal processes or even from the processes below the Earth' crust. The genetic mechanism of the thermogene travertines is related with the time and the location and is more complex than that of the meteogene travertines. Not all travertines keep records of the paleoclimatic information. So, it is on the basis of understanding the genetic mechanism of the travertines that one may rebuild the information of the paleoclimate and the lake deposits.

Cite this article

NIU Xinsheng , ZHENG Mianping , LIU Xifang , QI Lujing . Sedimentary property and the geological significance of travertines in Qinghai-Tibetan Plateau[J]. Science & Technology Review, 2017 , 35(6) : 59 -64 . DOI: 10.3981/j.issn.1000-7857.2017.06.006

References

[1] Pentecost A. Travertine[M]. Berlin Heidelberg:Springer Verlag, 2005:11-18.
[2] Freytet P, Plet A. Modern freshwater microbial carbonates:The phormidium stromatolites (tufa-travertine) of Southeastern Burgundy (Paris basin, France)[J]. Facies, 1996, 34:219-238.
[3] 戴亚南, 刘再华. 响水河钙华形成的水化学特征与碳稳定同位素研究[J]. 热带地理, 2003, 23(4):324-328. Dai Yanan, Liu Zaihua. Hydrochemical features and carbon isotopes in a calcite-precipitating river in Xiaoqikong, Guizhou[J]. Tropical Geography, 2003, 23(4):324-328.
[4] Lavrushin V Y, Kuleshov V N, Kikvadze O E. Travertines of the Northern Caucasus[J]. Lithology and Mineral Resources, 2006, 41(2):137-164.
[5] Kele S, Demény A, Siklósy Z, et al. Chemical and stable isotope composition of recent hot-water travertines and associated thermal waters, from Egerszalók, Hungary:Depositional facies and non-equilibrium fractionation[J]. Sedimentary Geology, 2008, 211:53-72.
[6] 李强, 戴亚南, 游省易, 等. 云南白水台钙华沉积成因及主要沉积类型研究[J]. 中国岩溶, 2002, 21(3):178-181. Li Qiang, Dai Yanan, You Shengyi, et al. Study on the feature of tufa deposits in Baishuitai, Yunan[J]. Carsologica Sinica, 2002, 21(3):178-181.
[7] 刘再华, 袁道先, 何师意, 等. 四川黄龙沟景区钙华的起源和形成机理研究[J]. 地球化学, 2003, 32(1):1-10. Liu Zaihua, Yuan Daoxian, He Shiyi, et al. Origin and forming mechanisms of travertine at Huanglong ravine of Sichuan[J]. Geochemical, 2003, 32(1):1-10.
[8] Shvartsev S L, Lepokurova O E, Kopylova Y G. Geochemical mechanisms of travertine formation from fresh waters in southern Siberia[J]. Russian Geology and Geophysics, 2007, 48:659-667.
[9] Pache M, Reitner J, Arp G, et al. Geochemical evidence for the formation of a large Miocene "travertine" mound at a sublacustrine spring in a soda lake(Wallenstein Castle Rock, Noerdlinger Ries, Germany)[J]. Facies, 2001, 45:211-230.
[10] Das S, Mohanti M. Sedimentology of Holocene tufa carbonate in Orissa state, India[J]. Carbonates and Evaporites, 2005, 20(1):8-13.
[11] Golubic S. Cyclic and noncyclic mechanisms in the formation of travertine[J]. Verhandlungen-Internationale Vereinigung fuer Theoretische und Angewandte Limnologie, 1969, 17:956-961.
[12] Buccino G, D'Argenio B, Ferreri V, et al. The travertines in the lower Tanagro Valley (Campania); geomorphological, sedimentological and geochemical study[J]. Bollettino della Societa Geologica Italiana, 1978, 97(4):617-646.
[13] Ford T D, Pedley H M. A review of tufa and travertine deposits of the world[J]. Earth-Science Reviews, 1996, 41(3/4):117-175.
[14] Matsuoka J, Kano A, Oba T, et al. Seasonal variation of stable isotopic compositions recorded in a laminated tufa, SW-Japan[J]. Earth Planet Science Letters, 2001, 1912(1):31-44.
[15] Kano A, Kawai T, Matsuoka J, et al. High-resolution records of rainfall events from clay bands in tufa[J]. Geology, 2004, 32:793-796.
[16] Andrews J E, Brasier A T. Seasonal records of climatic change in annually laminated tufas:Short review and future prospects[J]. Journal of Quaternary Science, 2005, 20(5):411-421.
[17] Wang H J, Yan H, Liu Z H. Contrasts in variations of the carbon and oxygen isotopic composition of travertines formed in pools and a ramp stream at Huanglong ravine, China:Implications for paleoclimatic interpretations[J]. Geochimica et Cosmochimica Acta, 2014, 125:34-48.
[18] Gao J, Zhou X, Fang B. U-series dating of the travertine depositing near the Rongma hot springs in northern Tibet, China, and its paleoclimatic implication[J]. Quaternary International, 2013, 298:98-106.
[19] Pustovoytov K, Riehl S, Hilger H H, et al. Oxygen isotopic composition of fruit carbonate in Lithospermeae and its potential for paleoclimate research in the Mediterranean[J]. Global and Planetary Change, 2010, 71(3-4):258-268.
[20] Brogi A, Capezzuoli E. Travertine deposition and faulting:The faultrelated travertine fissure-ridge at Terme S. Giovanni, Rapolano Terme (Italy)[J]. International Journal of Earth Sciences, 2009, 98(4):931-947.
[21] De Filippis L, Anzalone E, Billi A, et al. The origin and growth of a recently-active fissure ridge travertine over a seismic fault, Tivoli, Italy[J]. Geomorphology, 2013, 195:13-26.
[22] Temiz U, Gökten Y E, Eikenberg J. Strike-slip deformation and U/Th dating of travertine deposition:Examples from north Anatolian fault zone, Bolu and Yeniçag basins, Turkey[J]. Quaternary International, 2013, 312:132-140.
[23] 刘再华, 田友萍, 安德军, 等. 世界自然遗产-四川黄龙钙华景观的形成与演化[J]. 地球学报, 2009, 30(6):841-847. Liu Zaihua, Tian Youping, An Dejun, et al. Formation and evolution of the travertine landscape at Huanglong, Sichuan, one of the world natural heritages[J]. Acta Geoscientica Sinica, 2009, 30(6):841-847.
[24] 张金流, 刘再华. 世界遗产——四川黄龙钙华景观研究进展与展望[J]. 地球与环境, 2010, 38(1):78-87. Zhang Jinliu, Liu Zaihua. Progress and future prospect in research on the travertine landscape at Huanglong, Sichuan:A world's heritage site[J]. Earth and Environment, 2010, 38(1):78-87.
[25] Allen C C, Albert F G, Chafetz H S. Microscopic physical biomarkers in carbonate hot springs:Implications in the search for life on Mars[J]. Icarus, 2000, 147:49-67.
[26] Pellicer X M, Linares R, Gutiérrez F. Morpho-stratigraphic characterization of a tufa mound complex in the Spanish Pyrenees using ground penetrating radar and trenching, implications for studies in Mars[J]. Earth and Planetary Science Letters, 2014, 388:197-201.
[27] Pentecost A. British travertines:A review[J]. Proceedings of the Geologists' Association, 1993, 104(1):23-29.
[28] 刘再华. 表生和内生钙华的气候环境指代意义研究进展[J]. 科学通报, 2014, 59(23):2229-2239. Liu Zaihua. Research progress in paleoclimatic interpretations of tufa and travertine[J]. Chinese Science Bulletin, 2014, 59(23):2229-2239.
[29] 牛新生, 刘喜方, 陈文西. 西藏多格错仁南岸钙华地球化学特征与钾盐地质意义[J]. 沉积学报, 2013, 31(6):1031-1040. Niu Xinsheng, Liu Xifang, Chen Wenxi. Travertine in south bank of Dogai Coring, Tibet:Geochemical characteristics and potash geological significance[J]. Acta Sedimentologica Sinica, 2013, 31(6):1031-1040.
[30] 赵元艺, 崔玉斌, 赵希涛. 西藏扎布耶盐湖钙华岛钙华的地质地球化学特征及意义[J]. 地质通报, 2010, 29(1):124-141. Zhao Yuanyi, Cui Yubin, Zhao Xitao. Geological and geochemical features and significance of travertine in travertine-island from Zhabuye salt lake, Tibet, China[J]. Geological Bulletin of China, 2010, 29(1):124-141.
[31] 覃建勋, 韩鹏, 车晓超, 等. 利用荣玛地区温泉钙华δ18O及微量元素重建西藏全新世以来古气候[J]. 地学前缘, 2014, 21(2):312-322. Qin Jianxun, Han Peng, Che Xiaochao, et al. Resuming the Holocene paleoclimate using δ18O and trace elements of travertine in Rongma area, Tibet[J]. Earth Science Frontiers, 2014, 21(2):312-322.
[32] 侯增谦, 李振清, 曲晓明, 等. 0.5 Ma以来的青藏高原隆升过程——来自冈底斯带热水活动的证据[J]. 中国科学(D辑), 2001, 31(增刊1):27-33. Hou Zengqian, Li Zhenqing, Qu Xiaoming, et al. Uplift processes of the Tibetan Plateau since 0.5 Ma:Evidence from hydrothermal activity in Gangdese belt[J]. Science China (Earth Sciences), 2001, 31(Suppl 1):27-33.
[33] 赵平, 谢鄂军, 多吉, 等. 西藏地热气体的地球化学特征及其地质意义[J]. 岩石学报, 2002, 18(4):539-550. Zhao Ping, Xie Ejun, Dor Ji, et al. Geochemical characteristics of geothermal gases and their geological implications in Tibet[J]. Acta Petrologica Sinica, 2002, 18(4):539-550.
[34] Tapponnier P, Molnar P. Active faulting and tectonics of China[J]. Journal of Geophysical Research, 1977, 82:2905-2930.
[35] Molnar P, Tapponnier P. Active tectonics of Tibet[J]. Journal of Geophysical Research, 1978, 83:5361-5375.
[36] Ni J, York J. Late Cenozoic tectonics of the Tibetan plateau[J]. Journal of Geophysical Research, 1978. 83:5377-5384.
[37] 侯增谦, 李振清. 印度大陆俯冲前缘的可能位置:来自藏南和藏东活动热泉气体He同位素约束[J]. 地质学报. 2004(4):482-493. Hou Zengqian, Li Zhenqing. Possible location for underthrusting front of the Indus Continent:Constraints from Helium isotope of the geothermal gas in southern Tibet and eastern Tibet[J]. Acta Geologica Sinica, 2004(4):482-493.
[38] 李振清, 侯增谦, 聂风军, 等. 藏南上地壳低速高导层的性质与分布:来自热水流体活动的证据[J]. 地质学报, 2005, 79(1):68-77. Li Zhenqing, Hou Zengqian, Nie Fengjun, et al. Characteristic and distribution of the partial melting layers in the upper crust:Evidence from active hydrothermal fluid in the south Tibet[J]. Acta Geologica Sinica, 2005, 79(1):68-77.
[39] 中国地质大学(武汉)地质调查研究院. 青藏高原及邻区第四纪地质与地貌图说明书[R]. 武汉:中国地质大学地质调查研究院, 2010. Geological Survey of China University of Geosciences. The instruction of Quaternary geological and geomorphologic map of Qinghai-Tibetan Plateau and its adjacent area[R]. Wuhan:Geological Survey of China University of Geosciences, 2010.
[40] 刘再华, Yoshimura K, Inokura Y, 等. 四川黄龙沟天然水中的深源CO2与大规模的钙华沉积[J]. 地球与环境, 2005, 33(2):1-10. Liu Zaihua, Yoshimura K, Inokura Y, et al. Deep-source CO2 in natural waters and its role in extensive tufa deposition in the Huanglong ravines, Sichuan, China[J]. Earth and Environment, 2005, 33(2):1-10.
[41] 孙海龙, 刘再华, 吕保樱, 等. 云南白水台雨水线及钙华δ18O的季节和空间变化特征[J]. 地球化学, 2008, 37(6):542-548. Sun Hailong, Liu Zaihua, Lü Baoying, et al. Meteoric water line and spatiotemporal change in δ18O of the travertine in Baishuitai area[J]. Geochimica, 2008, 37(6):542-548.
[42] 刘再华, 张美良, 游省易, 等. 碳酸钙沉积溪流中地球化学指标的空间分布和日变化特征:以云南白水台为例[J]. 地球化学, 2004, 33(3):269-278. Liu Zaihua, Zhang Meiliang, You Shengyi, et al. Spatial and diurnal variations of the geochemical indicators in a calcite-precipitating stream-Case study of Baishuitai, Yunnan[J]. Geochimica, 2004, 33(3):269-278.
[43] 刘再华, 李红春, 游镇烽, 等. 云南白水台现代内生钙华微层的特征及其古气候重建意义[J]. 地球学报, 2006, 27(5):479-486. Liu Zaihua, Li Hongchun, You Zhenfeng, et al. Thickness and stable isotopic characteristics of modern seasonal climate controlled sub-annual travertine laminas in a travertine-depositing stream at Baishuitai, Southwest China:Implications for paleoclimate reconstruction[J]. Acta Geoscientica Sinica, 2006, 27(5):479-486.
[44] Wang H J, Yan H, Liu Z H. Contrasts in variations of the carbon and oxygen isotopic composition of travertines formed in pools and a ramp stream at Huanglong ravine, China:Implications for paleoclimatic interpretations[J]. Geochim Cosmochim Acta, 2014, 125:34-48.
[45] Hudson A M, Quade J. Long-term east-west asymmetry in monsoon rainfall on the Tibetan Plateau[J]. Geology, 2013, 41:351-354.
Outlines

/