Spescial Issues

Research progress in uranium-series dating method and application for saline lake of Tibet Plateau

  • MA Nina ,
  • ZHENG Mianping
Expand
  • MLR Key Laboratory of Saline Lake Resources and Environments, Institute of Mineral Resources, CAGS, Beijing 100037, China

Received date: 2016-11-22

  Revised date: 2017-02-24

  Online published: 2017-03-30

Abstract

The saline lake deposits involve information of environmental changes during various stages of its evolution and are an important research carrier for extreme arid climates. The geochronological study is very important for reconstructing the past climate changes, as recorded in the salt lake.At present, besides the dating based on the 14C, the OSL, the ESR and the paleomagnetism, the uranium-series dating is used widely in the chronology research of the salt lake deposit. With the advancement of the dating technology,the uranium-series dating has experienced several stages:The α spectrometry,the TIMS and the MC-ICP-MS, which have made some contributions to the geochronological study of the Quaternary and the salt lakes on the plateau. And various kinds of saline minerals, such as the carbonate, the halite and the gypsum, can be used as the uranium-series dating materials. With the progress of the mass spectrometry technology, the micro dating in saline minerals becomes possible. But the uranium-series dating on saline minerals remains a research issue. So in the future, the dating researches on saline minerals will be helpful for the applications of the uranium-series dating technology for the saline lake.

Cite this article

MA Nina , ZHENG Mianping . Research progress in uranium-series dating method and application for saline lake of Tibet Plateau[J]. Science & Technology Review, 2017 , 35(6) : 77 -82 . DOI: 10.3981/j.issn.1000-7857.2017.06.009

References

[1] 郑绵平, 赵元艺, 刘俊英. 第四纪盐湖沉积与古气候[J]. 第四纪研究, 1998, 18(4):297-307. Zheng Mianping, Zhao Yuanyi, Liu Junying. Quaternary saline lake deposition and paleoclimate[J]. Quaternary sciences, 1998, 18(4):297-307
[2] Zheng M, Tang J, Liu J, et al. Chinese saline lakes[J]. Hydrobiologia, 1993, 267(1):23-36.
[3] 郑绵平. 青藏高原盐湖[M]. 北京:北京科学技术出版社, 1989. Zheng Mianping. Saline lakes on the Qinghai-Tibetan plateau[M]. Beijing:Beijing Scientific and Technical Press, 1989.
[4] 黄麒, 陈克造. 七十三万年来柴达木盆地察尔汗盐湖古气候波动的形式[J]. 第四纪研究, 1990, 10(3):205-212. Huang Qi, Chen Kezao. Palaeoclimatic fluctuation fashion of Qarhan Salt Lake in Qaidam Basin in the past 730,000 years[J]. Quaternary sciences, 1990, 10(3):205-212.
[5] 黄麒, 孟昭强, 刘海玲. 柴达木盆地察尔汗湖区古气候波动模式的初步研究[J]. 中国科学, 1990(6):94-105. Huang Qi, Meng Zhaoqiang, Liu Hailing. The preliminary research on the paleoclimate fluctuation patterns of Qarhan Salt Lake in Qaidam basin[J]. Science China, 1990(6):94-105.
[6] 沈振枢. 柴达木盆地(水6孔)气侯地层序列的海陆对比[J]. 青海地质, 1993(2):48-56. Shen Zhenshu. Continent-ocean comparison of climatostratigraphic sequence in Qaidam Basin[J]. Geology of Qinghai, 1993(2):48-56.
[7] Wang J, Wang Y J, Liu Z C, et al. Cenozoic environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of central Asia[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1999, 152(1/2):37-47.
[8] 江德昕, 杨惠秋. 青海达布逊湖50万年以来气候变化的孢粉学证据[J]. 沉积学报, 2001, 19(1):101-106. Jiang Dexin, Yang Huiqiu. Palynological evidence for climatic changes in Dabuxun lake of Qinghai province during the past 500000 years[J]. Acta Sedimentologica Sinica, 2001, 19(1):101-106.
[9] 王建, 黄巧华, 柏春广, 等. 2.5 Ma以来柴达木盆地的气候干湿变化特征及其原因[J]. 地理科学, 2002, 22(1):34-38. Wang Jian, Huang Qiaohua, Bo Chunguang, et al. Tendency of the quaternary climatic change in Qaidam basin and its causal mechanism[J]. Scientia Geographica Sinica, 2002, 22(1):34-38
[10] 康安, 朱筱敏, 韩德馨, 等. 柴达木盆地第四纪孢粉组合及古气候波动[J]. 地质通报, 2003, 22(1):12-15. Kang An, Zhu Xiaomin, Han Dexin, et al. Quaternary sporopollen assemblages and paleoclimatic fluctuation in the Qaidam Basin[J]. Geological bulletin of China, 2003, 22(1):12-15.
[11] 刘嘉麒, 王文远. 第四纪地质定年与地质年表[J]. 第四纪研究, 1997(3):193-202. Liu Jiaqi, Wang Wenyuan. Quaternary geological dating and time scale[J]. Quaternary Sciences, 1997(3):193-202.
[12] 孙洪艳, 李志祥, 田明中. 第四纪测年研究新进展[J]. 地质力学学报, 2003, 9(4):371-378. Sun Hongyan, Li Zhixiang, Tian Mingzhong. New progress in Quaternary dating research[J]. Journal of Geomechanics, 2003, 9(4):371-378.
[13] Grün R, Huang P, Huang W, et al. ESR and U-series analyses of teeth from the palaeoanthropological site of Hexian, Anhui Province, China[J]. Journal of Human Evolution, 1998, 34(6):555-564.
[14] Grün R, Ge Y, Mcculloch M, et al. Detailed mass spectrometric U-series analyses of two teeth from the archaeological site of Pech de l'Aze II:Implications for uranium migration and dating[J]. Journal of Archaeological Science, 1999, 26(10):1301-1310.
[15] Grün R, Stringer C. Electron spin resonance dating and the evolution of modern humans[J]. Archaeometry, 1991, 33(2):153-199.
[16] 黄麒, 韩凤清. 柴达木盆地盐湖演化与古气候波动[M].北京:科学出版社, 2007. Huang Qi, Han Fengqing. Salt lake evolution and paleoclimate fluctuations on the Chadam Basin of China[M]. Beijing:Science Press, 2007.
[17] De Bièvre P, Lauer K, Moret H, et al. The half life of 234U[C]//Proceedings of an International Coference on Chemical and Nuclear Data, Measurement and Applications, Canterbury. London:Institution of Civil Engineers, 1971, 221-225.
[18] Ivanovich M, Latham A, Ku T L. Uranium-series disequilibrium applications in geochronology[M]//Ivanovich M, Harmon R S, Uranium Series Disequilibrium:Applications to earth, marine, and environmental sciences. 2nd Ed. Oxford:Clarendon Press, 1992:62-89.
[19] Kaufman A, Broecker W. Comparison of 230Th and 14C ages for carbonate materials from Late Lahontan and Bonneville[J]. Journal of Geophysical Research, 1965, 70(16):4039-4054.
[20] Cheng H, Edwards R, Hoff J, et al. The half-lives of uranium-234 and thorium-230[J]. Chemical geology, 2000, 169(1/2):17-33.
[21] Kurbatov L, Egorov V. On the possibility of determining the age of contemporary deposits by the radioactive method; experiment in determining the age of a ferro-manganese concretion of the Kara sea by the radioactive method[J]. Arctica, 1936, 4:107-120.
[22] Shen C, Edwards R, Cheng H, et al. Uranium and thoriumisotopic and concentration measurements by magnetic sector inductively coupled plasma mass sepectrometry[J]. Chemical Geolgy, 2002, 185(3/4):165-178.
[23] Goldstein S, Stirling C. Techniques for measuring uranium-series nuclides:1992-2002[J]. Reviews in Mineralogy and Geo-chemistry, 2003, 52(1):23-57.
[24] Zhao J, Yu K, Feng Y. High-precision 238U-234U-230Th disequilibrium dating of the recent past:A review[J]. Quaternary Geochronology, 2009, 4(5):423-433.
[25] Edwards R, Chen J, Wasserburg G. 238U-234U-230Th-232Th systemetics and the precise measurment of time over the past 500000 years[J]. Earth and Planetary Science Letters, 1987, 81(2):175-192.
[26] Bard E, Hamelin B, Fairbanks R. U-Th ages obtained by mass spectrometry in corals from Baebados:Sea level during the past 130000 years[J]. Nature, 1990, 346:456-458.
[27] 彭子成, 王兆荣, 孙卫东, 等. 高精度热电离质谱(TIMS)铀系法对第四纪标样年龄测定的研究[J]. 科学通报, 1997, 42(19):2090-2093. Peng Zicheng, Wang Zhaorong, Sun Weidong, et al. The study of the quaternary prototype age determination by high precision thermal ionization mass spectrometric dating[J]. Chinese Science Bulletin, 1997, 42(19):2090-2093.
[28] LuoX,RehkämperM,LeeD,etal.Highprecision 230Th/232Th and 234U/238U measurements using energy-filtered ICP magnetic sector multiple collector mass spectrometry[J]. International Journal of Mass Spectrometry and Ion Processes, 1997, 171:105-117.
[29] Hinrichs J, Schnetger B. A fast method for the simultanenous determination of 230Th、234U and 235U with isotope dilution sector field ICP-MS[J]. Analyst, 1999, 124(6):927-932.
[30] 程海. 铀系年代学新进展ICP-MS 230Th测年[J]. 第四纪研究, 2002, 22(3):292. Cheng Hai. A new progress of uranium series chronology:ICPMS 230Th dating[J]. Quaternary Sciences, 2002, 22(3):292.
[31] 马志邦, 马妮娜, 张雪飞, 等. 西藏扎布耶湖晚更新世沉积物230Th/238U年代学研究[J]. 地质学报, 2010, 84(11):1641-1651. Ma Zhibang, Ma Nina, Zhang Xuefei, et al. 230Th/U chronology of late Pleistocene lacustrine deposits in Zabuye Salt Lake, Tibet[J]. Acta Geologica Sinica, 2010, 84(11):1641-1651.
[32] Fan Q, Ma H, Ma Z, et al. An assessment and comparison of 230Th and AMS 14C ages for lacustrine sediments from Qarhan Salt Lake area in arid western China[J]. Environmental Earth Sciences, 2014, 71(3):1227-1237.
[33] Peng T, Goddard J, Broecker W. A direct comparison of 14C and 230Th ages at Searles Lake, California[J]. Quaternary Research, 1978, 9(3):319-329.
[34] Phillips F, Zreda M, Ku T, et al. 230Th/234U and 36Cl dating of evaporite deposits from the western Qaidam Basin, China:Implica-tions for glacial-period dust export form Central Asia[J]. Geological Society of America Bulletin, 1993, 105(12):1606-1616.
[35] Li M, Kang S, Ge J, et al. Saline rhythm and climatic change since 20.6 kyr BP from the Qiulinanmu Playa Lake in Tibet[J]. Carbonates Evaporites, 2010, 25(1):5-14.
[36] 沈振区, 童国榜, 张俊牌, 等. 青海柴达木盆地西部上新世以来的地质环境与成盐期[J]. 海洋地质与第四纪地质, 1990(4):89-99. Shen Zhenqu, Tong Guobang, Zhang Junpai, et al. Geological environments since Pliocene and accumulation process of saline deposit in west Chaidamu Basin, Qinghai, China[J]. Marine Geology & Quaternary Geology, 1990(4):89-99.
[37] 张彭熹, 张保珍, 洛温斯坦T K, 等. 古代异常钾盐蒸发岩的成因:以柴达木盆地察尔汗盐湖钾盐的形成为例[M]. 北京:科学出版社, 1993. Zhang Pengxi, Zhang Baozhen, Lowenstein T K, et al. The cause of the ancient abnormal potash evaporite:A case study of the formation of sylvite in Qarhan Salt Lake, Qaidam Basin[M]. Beijing:Science Press, 1993.
[38] 韩凤清, 黄麒, 王克俊, 等. 柴达木盆地昆特依盐湖的地球化学演化与古气候变化[J]. 海洋与湖沼, 1995, 26(5):502-508. Han Fengqing, Huang Qi, Wang Kejun, et al. Study of geochemical evolution and palaeo-climatic fluctuation of Kunteyi salt lake in the Qaidam Basin, Qinghai[J]. Oceanolgia Et Limnologia Sinica, 1995, 26(5):502-508.
[39] 郑绵平, 袁鹤然, 刘俊英, 等. 西藏高原扎布耶盐湖128 ka以来沉积特征与古环境记录[J]. 地质学报, 2007, 81(12):1608-1617. Zheng Mianping, Yuan Heran, Liu Junying, et al. Sedimentary characteristics and paleoenvironmental records of Zabuye Salt Lake, Tibetan Plateau, since 128 ka BP[J]. Acta Geologica Sinica, 2007, 81(12):1608-1617.
[40] 马志邦, 赵希涛, 朱大岗, 等. 西藏纳木错湖相沉积的铀系年代学研究[J]. 地球学报, 2002, 23(4):311-316. Ma Zhibang, Zhao Xitao, Zhu Dagang, et al. U-series chronology of lacustrine deposits from the Nam Co Lake, north Tibet plateau[J]. Acta Geoscientia Sinica, 2002, 23(4):311-316.
[41] 魏乐军, 郑绵平, 马志邦. 西藏台错盐湖TT-1剖面的沉积特征和年代学研究[J]. 地球学报, 2004, 25(4):397-404. Wei Lejun, Zheng Mianping, Ma Zhibang, et al. Characteristics and chronology of saline sediments along profile TT-1 of Dahyab Tso (Tai Cuo) in Tibet[J]. Acta Geoscientica Sinica, 2004, 25(4):397-404.
[42] Wei L, Zheng M, Liu X, et al. Discovery of borax-bearing mirabilite beds in Dong Co, northern Tibet, and its palaeoclimatic significance[J]. Acta Geolgica Sinica, 2002, 76(3):271-282.
[43] Ma N, Ma Z, Zheng M, et al. 230Th dating of stem carbonate deposits from Tai Cuo lake, western Tibetan Plateau, China[J]. Quaternary International, 2012, 250:55-62.
[44] Luo S, Ku T. U-series isochronal dating:A generalized method employing total-sample dissolution[J]. Geochimica et Cosmochimica Acta, 1991, 55(2):555-564.
[45] 彭子成, 刘卫国, 张兆峰, 等. 罗布泊湖相沉积石膏的热电离质谱-铀系定年[J]. 科学通报, 2001, 46(9):767-770. Peng Zicheng, Liu Weiguo, Zhang Zhaofeng, et al. High precision thermal ionization mass spectrometric dating of gypsum on Lop Nur lake deposion[J]. Chinese Science Bulletin, 2001, 46(9):767-770.
[46] Luo C, Peng Z, Yang D, et al. A Lacustrine record from Lop Nur, Xinjiang, China:Implications for paleoclimate change during Late Pleistocene[J]. Journal of Asian Earth Sciences, 2009, 34(1):38-45.
[47] 马妮娜, 郑绵平, 马志邦, 等. 柴达木盆地大浪滩地区表层芒硝的形成时代及环境意义[J]. 地质学报, 2011, 85(3):433-444. Ma Nina, Zheng Mianping, Ma Zhibang, et al. Forming age of surface mirabilite in Dalangtan, Qaidam Basin and its environmental significance[J]. Acta Geologica Sinica, 2011, 85(3):433-444.
Outlines

/