Special lssues

New progresses in autonomous collision avoidance control for UAV

  • WEI Ruixuan ,
  • XU Zhuofan ,
  • ZHANG Qirui ,
  • HE Renke
Expand
  • Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xi'an 710038, China

Received date: 2016-12-12

  Revised date: 2017-03-03

  Online published: 2017-04-18

Abstract

Because there are more and more unmanned aerial vehicles (UAVs) which are flying into low-altitude area, the flight safty problem is becoming more and more serious. In this paper after the basic principle for autonomous collision avoidance control for UAV is described, four main methods of autonomous collision avoidance control technologies for UAV are analyzed. Then some low-altitude challenges to the collision avoidance control technique for UAV are discussed. Moreover, a cognitive collision avoidance control method is presented by referring to the human cognitive development principle. Finally, some new research developments on the cognitive collision avoidance control of UAV are introduced.

Cite this article

WEI Ruixuan , XU Zhuofan , ZHANG Qirui , HE Renke . New progresses in autonomous collision avoidance control for UAV[J]. Science & Technology Review, 2017 , 35(7) : 64 -68 . DOI: 10.3981/j.issn.1000-7857.2017.07.007

References

[1] Plamen Angelov. 无人飞行器系统的感知与规避——研究与应用[M]. 齐晓慧, 田庆民译. 北京: 国防工业出版社, 2014. Plamen Angelov. Sense and avoid in UAS: Reasearch and application[M]. Qi Xiaohui, Tian Qingmin, trans. Beijing: National Defence Industry Press, 2014.
[2] 魏瑞轩, 茹常剑. 无人机运行安全问题及对策研究[R]. 北京: 空军司令部, 2014. Wei Ruixuan, Ru Changjian. Reasearch on strategy and problems for the flight safety in UAVs[R]. Beijing: Air Force, 2014.
[3] Davis J, Perhinschi M, Wilburn B, et al. Development of a modified voronoi algorithm for UAV path planning and obstacle avoidance[C]//AIAA Guidance, Navigation, and Control Conference. Reston VA: AIAA, 2006.
[4] Yu H, Sharma R, Beard R W, et al. Observability-based local path planning and obstacle avoidance using bearing-only measurements[J]. Robotics & Autonomous Systems, 2013, 61(12): 1392-1405.
[5] Cichella V, Choe R, Mehdi B S, et al. Trajectory generation and collision avoidance for safe operation of cooperating UAVs[C]// AIAA Guidance, Navigation, and Control Conference. Reston VA: AIAA, 2013.
[6] Lai C K, Whidborne J. Real-time trajectory generation for collision avoidance with obstacle uncertainty[C]//AIAA Guidance, Navigation, and Control Conference. Reston VA: AIAA, 2011.
[7] Jason R, Robert S, James C, et al. Unmanned Aerial system collision avoidance using artificial potential fields[J]. Journal of Aerospace Information Systems, 2014, 11(3): 140-144.
[8] Chen H D, Chang K C, Craig S A. UAV path planning with Tangent-Plus-Lyapunov vector field guidance and obstacle avoidance[J]. IEEE Transactions on Aerospace and Electronic System, 2013, 49(2): 840-856.
[9] Dimarogonas D V. Sufficient conditions for decentralized potential functions based controllers using canonical vector fields[J]. IEEE Transactions on Automatic Control, 2012, 57(10): 2621-2626.
[10] Li S H, Wang X Y. Finite-time consensus and collision avoidance control algorithms for multiple AUVs[J]. Automatica, 2013, 49(11): 3359-3367.
[11] 张启瑞, 魏瑞轩, 何仁珂, 等. 城市密集不规则障碍空间无人机航路规划[J]. 控制理论与应用, 2015, 32(10): 1407-1413 Zhang Qirui, Wei Ruixuan, He Renke, et al. Path planning for unmanned aerial vehicle in urban space crowded with irregular obstacles[J]. Control Theory & Applications, 2015, 32(10): 1407-1413.
[12] Moon J, Prasad J V R. Minimum-time approach to obstacle avoidance constrained by envelope protection for autonomous UAVs[J]. Mechatronics, 2011, 21(5): 861-875.
[13] Wang J, Xin M. Integrated Optimal Formation Control of Multiple Unmanned Aerial Vehicles[J]. Control Systems Technology IEEE Transactions on, 2013, 21(5): 1731-1744.
[14] Prachya P, Mehran M. Deconfliction algorithms for a pair of constant speed unmanned aerial vehicles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 54(1): 456-426.
[15] 许云红, 周锐, 夏洁, 等. 无人机自动防碰撞冲突检测与优化控制方法[J]. 电光与控制, 2014, 24(1): 1-6. Xu Yunhong, Zhou Rui, Xia Jie, et al. Conflict detection and optimal control for UAVs in automatic avoiding of dynamic obstacles[J]. Electronics Optics & Control, 2014, 21(1): 1-6.
[16] 魏瑞轩, 吕明海, 茹常剑, 等. 基于DE-DMPC的无人机编队重构防碰撞控制[J]. 系统工程与电子技术, 2014, 36(12): 2473-2478. Wei Ruixuan, Lü Minghai, Ru Changjian, et al. Reconfiguration collision avoidance method for UAV's formation based on DE-DMPC[J]. Systems Engineering and Electronics, 2014, 36(12): 2473-2478.
[17] Galisteu D G, Almeida F. Three-dimensional Guidance Filter for Autonomous Collision Avoidance[C]// AIAA Guidance, Navigation, and Control Conference. Reston VA: AIAA, 2013.
[18] Anusha M, Radhakant P. Reactive collision avoidance using nonlinear geometric and differential geometric guidance[J]. Journal of Guidance, Control and Dynamics, 2011, 34(1): 303-310.
[19] 茹常剑, 魏瑞轩, 郭庆, 等. 面向无人机自主防碰撞的认知博弈制导控制[J]. 控制理论与应用, 2014, 31(11): 1555-1560. Ru Changjian, Wei Ruixuan, Guo Qing, et al. Guidance control of cognitive game for unmanned aerial vehicleautonomous collision avoidance[J]. Control Theory & Applications, 2014, 31(11):1555-1560
[20] 崔军辉, 魏瑞轩, 张小倩. 无人机感知-规避系统安全区域动态决策方法[J]. 控制与决策, 2014, 29(12): 2195-2200. Cui Junhui, Wei Ruixuan, Zhang Xiaoqian. Dynamic decision-making method for safety region of sense and avoid system for unmanned aerial vehicle[J]. Control and Decision, 2014, 29(12): 2195-2200.
[21] Asada M, MacDorman K, Ishiguro H, et al. Cognitive developmental robotics as a new paradigm for the design of humanoid robots[J]. Robotics Autonomous System, 2001, 37(2):185-193.
[22] Reiner O, Axel S. System-ergonomic design of cognitive automation: Dual-mode cognitive design of vehicle guidance and control work systems[M]. Berlin: Springer, 2010.
[23] Weng J, McClelland J, Pentland A, et al. Autonomous mental development by robots and animals[J]. Science, 2001, 291(5504): 599-600.
[24] Karaoguz C, Rodemann T, Wrede B, et al. Learning information acquisition for multitasking scenarios in dynamic environments[J]. IEEE Transactions on Autonous Mental Development, 2013, 5(1): 46-61.
[25] Pointeau G, Dominey P F. Successive developmental levels of autobiographical memory for learning through social interaction[J]. IEEE Transactions on Autonomous Mental Development, 2014, 6(3): 200-212.
[26] 魏瑞轩, 茹常剑, 周凯, 等. 多无人机协同搜索的模糊认知决策方法研究[J]. 中国科学(技术科学), 2015, 45(6): 595-601. Wei Ruixuan, Ru Changjian, Zhou Kai, et al. Study on fuzzy cognitive decision-making method for multiple UAVs cooperative search[J]. Scientia Sinica Technologica, 2015, 45(6): 595-601.
[27] 魏瑞轩, 许卓凡, 倪天. 无人机认知防碰撞系统的防碰撞稳定性与安全边界研究[R]. 西安: 空军工程大学, 2017. Wei Ruixuan, Xu Zhuofan, Ni Tian. Study on the stability of collision avoidance & safety bound for the cognitive collision avoidance system of UAV[R]. Xi'an: Air Force Engineering University, 2017.
[28] 魏瑞轩, 何仁珂, 张启瑞, 等. 基于Skinner理论的无人机应急威胁规避方法[J]. 北京理工大学学报(自然科学版), 2016, 36(6): 620-624. Wei Ruixuan, He Renke, Zhang Qirui, et al. Skinner-based emergency collision avoidance mechanism for UAV[J]. Journal of Beijing Institute of Technology (Natural Science Edition), 2016, 36(6): 620-624.
[29] 张启瑞. 面向无人机防碰撞的自主心智发育方法[D]. 西安: 空军工程大学, 2016. Zhang Qirui. Autonomous Mental development method for collision avoidance of UAV[D]. Xi'an: Air Force Engineering University, 2016.
[30] Zhang Q R, Wei R X, Xu Z F, et al. Small UAVs with autonomous avoidance using humanlike thoughts[C]//Proceedings of 2016 IEEE Chinese Guidance, Navigation and Control Conference. Nanjing: IEEE, 2016: 1080-1084.
Outlines

/