Special Issues

Research status and development trend of key technologies of wind power accommodation in Jilin province

  • MU Gang ,
  • CUI Yang ,
  • CHEN Zhi ,
  • YAN Gangui ,
  • SUN Yong
Expand
  • 1. School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China;
    2. Control Center, State Grid Jilin Electric Power Supply Company, Changchun 130021, China

Received date: 2017-05-25

  Revised date: 2017-06-02

  Online published: 2017-06-14

Abstract

With the high penetration rate of wind power,Jilin province is now facing a severe bottleneck in wind power accommodation,which has seriously restricted further development and utilization of wind energy resources.The factors causing the bottleneck include fluctuation of wind power,load level of power grid,and heating demand in the winter season.In order to solve the problem of wind power curtailment,development of intelligent wind power dispatching system which is suitable for strongly fluctuating power supply,and utilization of emerging technologies,such as thermal energy storage technology and wind-energy heat supply technology,to improve the regulating capacity of power grid and increase the scale of electric load are two effective ways.According to the present situation of large-scale wind power integration of Jilin Province,this paper introduces the current situation and existing problems of wind power forecasting technology,thermal energy storage technology and wind-energy heat supply technology,and expounds the application and development trend of these key technologies for wind power accommodation.

Cite this article

MU Gang , CUI Yang , CHEN Zhi , YAN Gangui , SUN Yong . Research status and development trend of key technologies of wind power accommodation in Jilin province[J]. Science & Technology Review, 2017 , 35(11) : 20 -29 . DOI: 10.3981/j.issn.1000-7857.2017.11.003

References

[1] 国家能源局. 2016年风电并网运行情况[EB/OL].[2017-01-26]. http://www.nea.gov.cn/2017-01/26/c_136014615.htm. National Energy Administration. 2016 wind power integration and operation situation[EB/OL].[2017-01-26]. http://www.nea.gov.cn/2017-01/26/c_136014615.htm.
[2] 国务院办公厅. 国务院办公厅关于印发能源发展战略行动计划(2014-2020年)的通知[EB/OL].[2014-11-19]. http://www.gov.cn/zhengce/content/2014-11/19/content_9222.htm. General Office of the State Council. Notice on the strategic action plan for energy development (2014-2020)[EB/OL].[2014-11-19]. http://www.gov.cn/zhengce/content/2014-11/19/content_9222.htm.
[3] 穆钢, 崔杨, 刘嘉, 等. 有待用风电机组且传输受限电网的源网协调调度方法[J]. 电力系统自动化, 2013, 37(6):24-29. Mu Gang, Cui Yang, Liu Jia, et al. Source-Grid coordinated dispatch method for transmission constrained grid with surplus wind generators[J]. Automation of Electric Power Systems, 2013, 37(6):24-29.
[4] 徐飞, 闵勇, 陈磊, 等. 包含大容量储热的电-热联合系统[J]. 中国电机工程学报, 2014, 34(29):5063-5072. Xu Fei, Min Yong, Chen Lei, et al. Combined electricity-heat operation system containing large capacity thermal energy storage[J]. Proceedings of the CSEE, 2014, 34(29):5063-5072.
[5] Wu J Z, Yan J Y, Jia H J,et al. Integrated energy systems[J]. Applied Energy, 2016, 167:155-157.
[6] Mathiesen B, Lund H, Connolly D, et al. Smart energy systems for coherent 100% renewable energy and transport solutions[J]. Applied Energy, 2015, 145:139-154.
[7] Željko Bogdan, Kopjar D. Improvement of the cogeneration plant economy by using heat accumulator[J]. Energy, 2006, 31(13):2285-2292.
[8] Lovegrove K, Luzzi A, Kreetz H. A solar-driven ammonia-based thermochemical energy storage system[J]. Solar Energy, 1999, 67(4/6):309-316.
[9] Oeljeklaus G. Short-time heat storage in district heating networks[J]. Fernwaerme International, 1989, 18(4):3624-3678.
[10] Andersson S. Influence of the net structure and operating strategy on the heat load of a district-heating network[J]. Applied Energy, 1993, 46(2):171-179.
[11] Oeljeklaus G. Short-time heat storage in district heating networks[J]. Fernwaerme International, 1989, 18(4):3624-3678.
[12] Kinsara A A, Al-Rabghi O M, Elsayed M M. Parametric study of an energy efficient air conditioning system using liquid desiccant[J]. Applied Thermal Engineering, 1998, 18(5):327-335.
[13] Liu X H, Jiang Y, Xia J J, et al.Analytical solutions of coupled heat and mass transfer processes in liquid desiccant air dehumidifier/regenerator[J]. Energy Conversion and Management, 2007, 48(7):2221-2232.
[14] Toke D, Fragaki A. Do liberalised electricity markets help or hinder CHP and district heating? The case of the UK[J]. Energy Policy, 2008, 36(4):1448-1456.
[15] Christidis A, Koch C, Pottel L, et al. The contribution of heat storage to the profitable operation of combined heat and power plants in liberalized electricity markets[J]. Energy, 2012, 41(1):75-82.
[16] Vittorio V, Francesco C. Primary energy savings storage through thermal storage in district heating networks[J]. Energy, 2011(36):4278-4286.
[17] Pagliarini G, Rainieri S. Modeling of a thermal energy storage system coupled with combined heat and power generation for the heating requirements of a University Campus[J]. Applied Thermal Engineering, 2010, 30(10):1255-1261.
[18] 吕泉, 陈天佑, 王海霞, 等. 含储热的电力系统电热综合调度模型[J]. 电力自动化设备, 2014, 34(5):79-85. Lü Quan, Chen Tianyou, Wang Haixia, et al. Combined heat and power dispatch model for power system with heat accumulator[J]. Electric Power Automation Equipment, 2014, 34(5):79-85.
[19] Nielsen M G, Morales J M, Zugno M, et al. Economic valuation of heat pumps and electric boilers in the Danish energy system[J]. Applied Energy, 2016, 167:189-200.
[20] Böttger D, Götz M, Theofilidi M, et al. Control power provision with power-to-heat plants in systems with high shares of renewable energy sources-An illustrative analysis for Germany based on the use of electric boilers in district heating grids[J]. Energy, 2015, 82(4):157-167.
[21] Lund H, Mathiesen B V. Energy system analysis of 100% renewable energy systems-The case of Denmark in years 2030 and 2050[J]. Energy, 2009, 34(5):524-531.
[22] Mathiesen B V, Lund H. Comparative analyses of seven technologies to facilitate the integration of fluctuating renewable energy sources[J]. IET Renewable Power Generation, 2009, 3(2):190-204.
[23] Hughes L. Meeting residential space heating demand with windgenerated electricity[J]. Renewable Energy, 2010, 35(8):1765-1772.
[24] 吕泉, 姜浩, 陈天佑, 等. 基于电锅炉的热电厂消纳风电方案及其国民经济评价[J]. 电力系统自动化, 2014, 38(1):6-12. Lü Quan, Jiang Hao, Chen Tianyou, et al. Wind Power Accommodation by combined heat and power plant with electric boiler and its national economic evaluation[J]. Automation of Electric Power Systems, 2014, 38(1):6-12.
[25] 国家能源局综合司. 关于做好风电清洁供暖工作的通知[EB/OL].[2013-03-15]. http://zfxxgk.nea.gov.cn/auto87/201303/t20130322_1599.htm. Comprehensive Department of National Energy Administration. Notice on the work of clean heating using wind power[EB/OL].[2013-03-15]. http://zfxxgk.nea.gov.cn/auto87/201303/t20130322_1599.htm.
[26] Sashirekha A, Pasupuleti J, Moin N H, et al. Combined heat and power (CHP) economic dispatch solved using Lagrangian relaxation with surrogate subgradient multiplier updates[J]. International Journal of Electrical Power & Energy Systems, 2013, 44(1):421-430.
[27] Abdolmohammadi H R, Kazemi A. A Benders decomposition approach for a combined heat and power economic dispatch[J]. Energy Conversion & Management, 2013, 71(1):21-31.
[28] Mohammadi-Ivatloo B, Moradi-Dalvand M, Rabiee A. Combined heat and power economic dispatch problem solution using particle swarm optimization with time varying acceleration coefficients[J]. Electric Power Systems Research, 2013, 95(1):9-18.
[29] Li J, Fang J, Zeng Q, et al. Optimal operation of the integrated electrical and heating systems to accommodate the intermittent renewable sources[J]. Applied Energy, 2016, 167:244-254.
[30] 崔杨, 陈志, 严干贵, 等. 基于含储热热电联产机组与电锅炉的弃风消纳协调调度模型[J]. 中国电机工程学报, 2016, 36(15):4072-4080. Cui Yang, Chen Zhi, Yan Gangui, et al. Coordinated Wind Power Accommodating Dispatch Model Based on Electrical Boiler and CHP With Thermal Storage[J]. Proceedings of the CSEE, 2016, 36(15):4072-4080.
Outlines

/