Special Issues

Radar low-observable target detection

  • CHEN Xiaolong ,
  • GUAN Jian ,
  • HUANG Yong ,
  • HE You
Expand
  • 1. Department of Electronic and Information Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, China;
    2. Institute of Information Fusion, Naval Aeronautical and Astronautical University, Yantai 264001, China

Received date: 2017-05-11

  Revised date: 2017-06-06

  Online published: 2017-06-14

Abstract

To deal with the difficulty in radar signal processing,effective and efficient detection of low-observable targets in complex environments is an ongoing research hotspot.On the one hand,due to strong clutter and complex motion of a target,the signal may be extremely weak such that it is hard to detect the signal either in time domain or in frequency domain.On the other hand,the signal resources of traditional radar are limited and cannot achieve refined description of the target itself.Therefore,it is urgent to develop new system and technology for radar target detection.In this paper,we firstly summarize the main difficulties for low-observable target detection.Then,we systematically review conventional radar moving target detection methods.Finally,we discuss the future development from the perspective of detection techniques and systems.

Cite this article

CHEN Xiaolong , GUAN Jian , HUANG Yong , HE You . Radar low-observable target detection[J]. Science & Technology Review, 2017 , 35(11) : 30 -38 . DOI: 10.3981/j.issn.1000-7857.2017.11.004

References

[1] 杨建宇. 雷达技术发展规律和宏观趋势分析[J]. 雷达学报, 2012, 1(1):19-27. Yang Jianyu. Development laws and macro trends analysis of radar technology[J]. Journal of Radars, 2012, 1(1):19-27.
[2] 何友, 黄勇, 关键, 等. 海杂波中的雷达目标检测技术综述[J]. 现代雷达, 2014, 36(12):1-9. He You, Huang Yong, Guan Jian, et al. An overview on radar target detection in sea clutter[J]. Modern Radar, 2014, 36(12):1-9.
[3] 许稼, 彭应宁, 夏香根, 等. 空时频检测前聚焦雷达信号处理方法[J]. 雷达学报, 2014, 3(2):129-141. Xu Jia, Peng Yingning, Xia Xianggen, et al. Radar signal processing method of space-time-frequency focus-before-detects[J]. Journal of Radars, 2014, 3(2):129-141.
[4] 陈小龙, 关键, 董云龙, 等. 稀疏域海杂波抑制与微动目标检测方法[J]. 电子学报, 2016, 44(4):860-867. Chen Xiaolong, Guan Jian, Dong Yunlong, et al. Sea clutter suppression and micromotion target detection in sparse domain[J]. Chinese Journal of Electronics, 2016, 44(4):860-867.
[5] Guan J, Chen X L, Huang Y, et al. Adaptive fractional fourier transform-based detection algorithm for moving target in heavy sea clutter[J]. Radar Sonar & Navigation Iet, 2012, 6(5):389-401.
[6] 宋杰, 何友, 关键. 一种双模杂波抑制的准自适应MTI系统[J]. 兵工学报, 2009, 30(5):546-550. Song Jie, He You, Guan Jian. A near adaptive MTI system for bimodal clutter suppression[J]. Acta Armamentarii, 2009, 30(5):546-550.
[7] 马晓岩, 袁俊泉. 基于离散小波变换提高MTD检测性能的仿真分析[J]. 信号处理, 2001, 17(2):148-151. Ma Xiaoyan, Yuan Junquan. Simulation analysis for MTD detectability improvement using the discrete wavelet transform (DWT)[J]. Signal Processing, 2001, 17(2):148-151.
[8] Chen X L, Guan J, Liu N B, et al. Maneuvering Target Detection via Radon-Fractional Fourier Transform-Based Long-Time Coherent Integration[J]. IEEE Transactions on Signal Processing, 2014, 62(4):939-953.
[9] 庞存锁. 基于离散多项式相位变换和分数阶傅里叶变换的加速目标检测算法[J]. 电子学报, 2012, 40(1):184-188. Pang Cunsuo. An accelerating target detection algorithm based on DPT and fractional fourier transform[J]. Chinese Journal of Electronics, 2012, 40(1):184-188.
[10] Chen X L, Guan J, Bao Z, et al. Detection and Extraction of Target With Micromotion in Spiky Sea Clutter Via Short-Time Fractional Fourier Transform[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013, 52(2):1002-1018.
[11] Xing M D, Su J H, Wang G Y, et al. New parameter estimation and detection algorithm for high speed small target[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1):214-224.
[12] 吴孙勇, 廖桂生, 朱圣棋, 等. 提高雷达机动目标检测性能的二维频率域匹配方法[J]. 电子学报, 2012, 40(12):2415-2420. Wu Sunyong, Liao Guisheng, Zhu Shengqi, et al. A new method for radar maneuvering target detection based on matched filtering in two-dimensional frequency domain[J]. Chinese Journal of Electronics, 2012, 40(12):2415-2420.
[13] Carlson B D, Evans E D, Wilson S L. Search radar detection and track with the Hough transform. I. system concept[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1):102-108.
[14] Yu J, Xu J, Peng Y N, et al. Radon-Fourier transform for radar target detection (Ⅲ):Optimality and fast implementations[J]. IEEE Transactions on Aero-space and Electronic Systems, 2012, 48(2):991-1004.
[15] Tao R, Zhang N, Wang Y. Analysing and compensating the effects of range and Doppler frequency migrations in linear frequency modulation pulse com-pression radar[J]. IET Radar, Sonar and Navigation, 2011, 5(1):12-22.
[16] De Wind H J, Cilliers J E, Herselman P L. Dataware:Sea clutter and small boat radar reflectivity databases[J]. IEEE Signal processing magazine, 2010, 27(2):145-148.
[17] Xu J, Xia X G, Peng S B, et al. Radar maneuvering target motion estimation based on generalized Radon-Fourier transform[J]. IEEE Transactions on Sig-nal Processing, 2012, 60(12):6190-6201.
[18] Chen X L, Guan J, Liu N B, et al. Detection of a low observable sea-surface target with micromotion via the Radon-linear canonical transform[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(7):1225-1229.
[19] Li X L, Cui G L, Yi W, et al. A fast maneuvering target motion parameters estimation algorithm based on ACCF[J]. IEEE Signal Processing Letters, 2015, 22(3):265-269.
[20] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
[21] 李刚, 夏向根. 参数化稀疏表征在雷达探测中的应用[J]. 雷达学报, 2016, 5(1):1-7. Li Gang, Xia Xianggen. Parametric Sparse representation and its applications to radar sensing[J]. Journal of Radars, 2016, 5(1):1-7.
[22] 焦李成, 杨淑媛, 刘芳, 等. 压缩感知回顾与展望[J]. 电子学报, 2011, 39(7):1651-1662. Jiao Licheng, Yang Shuyuan, Liu Fang, et al. Development and prospect of compressive sensing[J]. Chinese Journal of Electronics, 2011, 39(7):1651-1662.
[23] 陈小龙, 关键, 董云龙, 等. 稀疏域海杂波抑制与微动目标检测方法[J]. 电子学报, 2016, 44(4):860-867. Chen Xiaolong, Guan Jian, Dong Yunlong, et al. Sea clutter suppression and micromotion target detection in sparse domain[J]. Chinese Journal of Electronics, 2016, 44(4):860-867.
[24] Chen X L, Guan J, Dong Y L, et al. Sea clutter suppression and micromotion target detection in sparse domain[J]. Acta Electronica Sinica, 2016, 44(4):860-867.
[25] Uysal F, Selesnick I, Pillai U, et al. Dynamic clutter mitigation using sparse optimization[J]. Aerospace & Electronic Systems Magazine IEEE, 2014, 29(7):37-49.
[26] Xu J, Wang W, Gao J H, et al. Monochromatic noise removal via sparsity-enabled signal decomposition method[J]. IEEE Geoscience and Remote Sens-ing Letters, 2013, 10(3):533-537.
[27] 罗倩. 基于稀疏表示的杂波建模和微弱运动目标探测[J]. 现代雷达, 2016, 38(2):43-46. Luo Qian. Small moving target detection using sparse clutter modeling[J]. Modern Radar, 2016, 38(2):43-46.
[28] Sparse Fast Fourier Transform[EB/OL].[2017-03-31]. http://groups.csail.mit.edu/netmit/sFFT/.
[29] 简涛, 何友, 苏峰, 等. 非高斯杂波下修正的SDD-GLRT距离扩展目标检测器[J]. 电子学报, 2009.12, 37(12):2662-2667. Jian Tao, He You, Su Feng, et al. Modified SDD-GLRT detector for range-spread targets in non-gaussian clutter[J]. Chinese Journal of Electronics, 2009, 37(12):2662-2667.
[30] 简涛, 何友, 苏峰, 等. 高距离分辨率雷达目标检测研究现状与进展[J]. 宇航学报, 2010, 31(12):2623-2628. Jian Tao, He You, Su Feng, et al. Overview of high range resolution radar target detection[J]. Journal of Astronautics, 2010, 31(12):2623-2628.
[31] 关键, 张晓利, 黄勇, 等. 一种距离扩展目标的稳健检测算法[J]. 信号处理, 2011, 27(12):1878-1883. Guan Jian, Zhang Xiaoli, Huang Yong, et al. A robust detection method for range-spread targets[J]. Signal Processing, 2011, 27(12):1878-1883.
[32] 张琦, 高贵, 匡纲要. SAR图像目标的融合检测方法[J]. 电子与信息学报, 2006, 28(10):1802-1805. Zhang Qi, Gao Gui, Kuang Gangyao. A fusion method for target detection in SAR image[J]. Journal of Electronics & Information Technology, 2006, 28(10):1802-1805.
[33] 刘向君, 杨泽刚, 刘强. 基于多波段SAR图像目标检测决策级融合和图像分类的目标状态标注[J]. 信号处理, 2009, 25(8A):223-225. Liu Xiangjun, Yang Zegang, Liu Qiang. Multi-band SAR image target condition labeling based on target detection and image classification[J]. Signal Processing, 2009, 25(8A):223-225.
[34] Li J, Stoica P. MIMO Radar signal processing[M]. San Francisco:Wiley-IEEE Press, 2008.
[35] 汤俊, 伍勇, 彭应宁, 等. MIMO雷达检测性能和系统配置研究[J]. 中国科学(信息科学), 2009, 39(7):776-781. Tang Jun, Wu Yong, Peng Yingning, et al. Research on detection performance and system configuration of MIMO radar[J]. Scientia Sinica Informationis, 2009, 39(7):776-781.
[36] Guan J, Huang Y. Detection performance analysis for MIMO radar with distributed apertures in Gaussian colored noise[J]. Science China Information Sci-ences, 2009, 52(9):1688-1696.
[37] Wicks M C, Rangaswamy M, Adve R, et al. Space-time adaptive processing:A knowledge-based perspective for airborne radar[J]. Signal Processing Magazine IEEE, 2006, 23(1):51-65.
[38] Guerci J R, Baranoski E J. Knowledge-aided adaptive radar at DARPA:An overview[J]. Signal Processing Magazine IEEE, 2006, 23(1):41-50.
[39] 李青华, 姚云萍. 一种基于知识辅助的CFAR检测器[J]. 雷达科学与技术, 2012, 10(1):88-93. Li Qinghua, Yao Yunping. A knowledge-aided CFAR detector[J]. Radar Science and Technology, 2012, 10(1):88-93.
[40] 陈小龙, 关键, 何友. 微多普勒理论在海面目标检测中的应用及展望[J]. 雷达学报, 2013, 2(1):123-134. Chen Xiaolong, Guan Jian, He You. Applications and prospect of micro-motion theory in the detection of sea surface target[J]. Journal of Radars, 2013, 2(1):123-134.
Outlines

/