Application research progress of digital speckle correlation method in architectural mechanics analysis: A review

  • MA Yanxuan ,
  • ZHANG Yingrui ,
  • LEI Xin ,
  • WANG Jinhua ,
  • SUN Qixuan ,
  • ZHOU Huanzhu
  • School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China

Received date: 2017-02-20

  Revised date: 2017-05-29

  Online published: 2017-07-17


Digital speckle correlation method is a kind of integral, non-contacting, high-automation and high-precision optical deformation measurement method, which has its unique superior performance such as high sensitivity, easily identifying cracks and estimate accuracy, compared with other deformation measuring techniques. As a kind of deformation measurement method for solid material surface, it gets fast application in the deformation measurement for construction projects. In this paper, the basic principle of digital speckle correlation method is elaborated, and the application progress of digital speckle correlation method in mechanical behaviors measurement and analysis of building materials are summarized, including the concrete, asphalt material, Portland cement, composite materials, explosion-proof materials with negative Poisson's ratio, and architectural structures such as concrete structure, bridge structure, geotechnical structure and wooden structure The application prospect and development trend of digital speckle correlation method for building materials and architectural structures in service are generalized and predicted as well. With significant boost of the measuring accuracy and speed of digital speckle correlation method, it is envisioned that combined with the methods of optical fiber technology and computer simulation, micromechanics behaviors of three-dimensional solid of building materials and architectural structures can achieve dynamic real-time monitoring.

Cite this article

MA Yanxuan , ZHANG Yingrui , LEI Xin , WANG Jinhua , SUN Qixuan , ZHOU Huanzhu . Application research progress of digital speckle correlation method in architectural mechanics analysis: A review[J]. Science & Technology Review, 2017 , 35(13) : 77 -83 . DOI: 10.3981/j.issn.1000-7857.2017.11.012


[1] Yamaguchi I. A laser-speckle strain gauge[J]. Journal of Physics E Scientific Instruments, 2000, 14(14): 1270-1273.
[2] Peters W H, Ranson W F. Digital imaging techniques in experimental stress analysis[M]. Kluwer Law International, 1982, 21(3): 427-431.
[3] Gajewski T, Garbowski T. Calibration of concrete parameters based on digital image correlation and inverse analysis[J]. Archives of Civil & Mechanical Engineering, 2014, 14(1): 170-180.
[4] Chen X, Yang L, Xu N, et al. Cluster approach based multi-camera digital image correlation: Methodology and its application in large area high temperature measurement[J]. Optics & Laser Technology, 2014, 57 (7): 318-326.
[5] Rossol M N, Shaw J H, Hrishikesh B, et al. Characterizing weave geometry in textile ceramic composites usingdigital image correlation[J]. Journal of the American Ceramic Society, 2013, 96: 2362-2365.
[6] Krottenthaler M, Schmid C, Schaufler J, et al. A simple method for residual stress measurements in thin films by means of focused ion beam milling and digital image correlation[J]. Surface & Coatings Technology, 2013, 215(4): 247-252.
[7] Ghorbani R, Matta F, Sutton M A. Full-Field displacement measure- ment and crack mapping on masonry wallsusing digital image correla- tion[M]//Advancement of Optical Methods in Experimental Mechanics (Vol 3). 2014: 187-196.
[8] Tominaga Y, Arikawa S, Yoneyama S, et al. Observation of thermal strain on electronic packages using digital image correlation[M]//Advancement of Optical Methods in Experimental Mechanics(Vol 3). 2014: 151-157.
[9] Yuan Y, Huang J, Peng X, et al. Accurate displacement measurement via a self-adaptive digital image correlation method based on a weighted ZNSSD criterion[J]. Optics and Lasers in Engineering, 2014, 52(1): 75-85.
[10] Yates J R, Zanganeh M, Tai Y H. Quantifying crack tip displacement fields with DIC[J]. Engineering Fracture Mechanics, 2010, 77(11): 2063-2076.
[11] Roux S, Réthoré J, Hild F. Digital image correlation and fracture: an advanced technique for estimating stress intensity factors of 2D and 3D cracks[J]. Journal of Physics D Applied Physics, 2009, 42(21): 214004-214024.
[12] Lin Q, Labuz J F. Fracture of sandstone characterized by digital image correlation[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 60(8): 235-245.
[13] 高红俐, 刘欢, 齐子诚, 等. 基于DSCM谐振载荷作用下疲劳裂纹尖 端位移应变场测量[J]. 兵器材料与科学工程, 2016, 39(1): 17-21. Gao Hongli, Liu Huan, Qi Zicheng, et al. Measurement of displacement and strain fields of fatigue crack tip under resonant loading based on DIC method[J]. Ordnance Material Science and Engineering, 2016, 39(1): 17-21.
[14] Ma Y, Zheng Y, Meng H, et al. Heterogeneous PVA hydrogels with micro-cells of both positive and negative Poisson's ratios[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 23: 22-31.
[15] 王岚, 贾永杰, 张大伟, 等. 基于数字散斑相关法的聚合物改性沥青 混合料抗裂性能[J]. 复合材料学报, 2016, 33(9): 2123-2131. Wang Lan, Jia Yongjie, Zhang Dawei et al. Crack resistance of polymer modified asphalt mixture based on digital speckle correlation technique[J]. Acta Materiae Compositae Sinica, 2016, 33(9): 2123- 2131.
[16] 纪维伟, 潘鹏志, 苗书婷, 等. 基于数字图像相关法的两类岩石断裂 特征研究[J]. 岩土力学, 2016, 37(8): 2300-2305. Ji Weiwei Pan Pengzhi, Miao Shuting, et al. Fracture characteristics of two types of rocks based on digital image correlation[J]. Rock and Soil Mechanics, 2016, 37(8): 2300-2305.
[17] 王冬梅, 方如华, 秦玉文. 数字图像相关测量的误差分析及其改进 措施[J]. 实验力学, 1998, 13(3): 417-422.Wang Dongmei, Fang Ruhua, Qin Yuwen. Measuring errors analysis and improvement of digital image correlation method measurement system[J]. Journal of ExperimentalMechanics, 1998, 13(3): 417-422.
[18] 孟利波, 金观昌, 姚学锋. DSCM中摄像机光轴与物面不垂直引起的 误差分析[J]. 清华大学学报(自然科学版), 2006, 46(11): 1930-1932. Meng Libo, Jin Guanchang, Yao Xxuefeng. Errors caused by misalignment of the optical camera axis and the object surface in the DSCM[J]. Journal of Tsinghua University (Science and Technology), 2006, 46(11): 1930-1932.
[19] 戴相录, 谢惠民, 王怀喜. 二维数字图像相关测量中离面位移引起 的误差分析[J]. 实验力学, 2013, 28(1): 11-19. Dai Xianglu, Xie Huimin, Wang Huaixi. Analysis of the eror caused by off-plane displacement in two-dimensional digital image correlation measurement[J]. Journal of Experimental Mechanics, 2013, 28(1): 11-19.
[20] 张爱印, 任印国. Golden Surfer软件绘制地质图件的技巧[J]. 中国煤 田地质, 2006(增刊): 87-89. Zhang Aiyin, Ren Yinguo. Geological map making tips when use the golden surfer software [J]. Coal Geology of China, 2006(Suppl 1): 87-89.
[21] 张鸣. 水泥基材料用微胶囊自修复方法与原理的研究[D]. 长沙: 中 南大学, 2013. Zhang Ming. A study on microcapsule based self-healing method and mechanism for cementitious composites[D]. Changsha: Central South University, 2013.
[22] Jacobsen S, Marchand J, Boisvert L. Effect of cracking and healing onchloride transport in OPC concrete[J]. Cement and Concrete Research, 1996, 26(6): 869-881.
[23] Mihashi H, Nishiwaki T. Development of engineered self-healing and self-repairing concrete-state-of-the-art Report[J]. Journal of Ad- vanced Concrete Technology, 2012, 10(5):170-184.
[24] Zhu Y, Barthelat F, Labossiere P E, et al. Nanoscale displacement and strain measurement[C]. Charlotte, USA Proceedings of the 2003 SEM Annual Conference and Exposition on Experimental and Applied Mechanics, ResearchGate, 2003: 155-158.
[25] Love J, Deininger P. Micromechanical applications of digital image correlation techniques[M]//Interferometry in Speckle Light. Springer Berlin Heidelberg, 2000: 67-74.
[26] 司炳君, 孙治国, 王东升, 等. 高强箍筋约束高强混凝土柱抗震性能 研究综述[J]. 土木工程学报, 2009, 42(4): 1-9. Si Bingjun, Sun Zhiguo, Wang Dongsheng, et al. Review of studies on the seismic behavior of high strength concrete columns with high strength transverse reinforcement[J]. China Civil Engineering Journal, 2009, 42(4): 1-9.
[27] 吴庆, 倪源, 孙林柱, 等. 基于VIC-3D技术的高强混凝土单轴受压 试验研究[J]. 混凝土, 2014, 11(2): 19-23. Wu Qing, Ni Yuan, Sun Linzhu, et al. Experimental study on highstrength concrete under uniaxial compression based on VIC-3D technology[J]. Concrete, 2014, 11(2): 19-23.
[28] 刘燕, 刘晋艳, 易成. 缺陷混凝土抗氯离子渗透性能试验研究[J]. 建 筑材料学报, 2014, 17(6): 979-983. Liu Yan, Liu Jinyan, Yi Cheng. Experimental study of the chloride penetration of defective concrete[J]. Journal of Building Materials, 2014, 17(6): 979-983.
[29] Chen J, Zhang X, Zhan N, et al. Deformation measurement across crack using two-step extended digital image correlation method[J]. Optics & Lasers in Engineering, 2010, 48(11): 1126-1131.
[30] Heredia A S, Marquez A P A. Concrete stress-strain characterization by digital image correlation[J]. Journal of AppliedMechanical Engineering, 2015, 4(6): 1-5.
[31] Fayyad T M, Lees J M. Application of digital image correlation to reinforced concrete fracture[J]. Procedia Materials Science, 2014, 3: 1585-1590.
[32] Nunes L C S, Reis J M L. Estimation of crack-tip-opening displacement and crack extension of glass fiber reinforced polymer mortars using digital image correlation method[J]. Materials and Design, 2012, 33(1): 248-253.
[33] 王岚, 王宇, 弓宁宁, 等. 基于数字散斑相关方法的沥青混合材料老 特性实验研究[J]. 功能材料, 2016, 47(1): 1087-1092. Wang Lan, Wang Yu, Gong Ningning et al. Aging characteristic test research of asphalt mixture based on the digital speckle correlation method[J]. Journal of Functional Materials, 2016, 47(1): 1087-1092.
[34] 杨建林, 王来贵, 张鹏, 等. 水泥改性泥岩受压破坏的变形场演化规 律研究[J]. 硅酸盐通报, 2015, 34(11): 3271-3276. Yang Jianlin, Wang Laigui G, Zhang Peng, et al. Deformation field evolution during compression failure process of mudstone modified by portland cement[J]. Bulletin of the Chinese Ceramic Society, 2015, 34 (11): 3271-3276.
[35] 赵丽娜, 贺平照, 邢树根, 等. 基于数字散斑方法的炭/炭复合材料高 温应变测量[J]. 固体火箭技术, 2014, 37(5): 729-733. Zhao Lina, He Pingzhao,Xing Shugen, et al. Strain measurement of carbon/carbon composites at high temperatures by digital speckle correlation method[J]. Journal of Solid Rocket Technology, 2014, 37 (5): 729-733.
[36] Zhou P, Goodson K E. Subpixel displacement and deformation gradient measurement using digital image/specklecorrelation(DISC)[J]. Optical Engineering, 2001, 40(8): 1613-1620.
[37] Meng L B, Jin G C, Yao X F. Application of iteration and finite element smoothing technique for displacement and strain measurement of digital speckle correlation[J]. Optics and Lasers in Engineering, 2007, 45(1): 57-63.
[38] 徐永杰. 多孔结构复合拉胀混凝土的设计及力学性能表征[D]. 青 岛: 青岛理工大学, 2015. Xu Yongjie. Design of auxetic concrete with porous structure and characterization of their mechanical properties[D]. Qingdao: Qingdao University of Technology, 2015.
[39] 童晶, 金贤玉, 田野, 等. 基于DSCM方法的锈蚀钢筋混凝土表面开 裂[J]. 浙江大学学报(工学版), 2015, 49(2): 193-199. Tong Jing, Jin Xianyu, Tian Ye, et al. Study on surface cracking of corroded reinforced concrete based on DIC method[J]. Journal of Zhejiang University(Engineering Science Edition), 2015, 49(2): 193- 199.
[40] 刘光利, 姜红艳. 数字散斑相关方法的原理及土木工程应用简介[J]. 安徽建筑大学学报, 2015, 23(6): 53-62. Liu Guangli, Jiang Hongyan. Principle of digital speckle correlation method and its applications in civil engineering deformation measurement[J]. Journal of Anhui Institute of Architecture and Industry, 2015, 23(6): 53-62.
[41] 孟利波, 刘会耕, 胡建新. 基于数字散斑相关方法的中小跨径桥梁 挠度测量系统研究[J]. 公路交通技术, 2013(5): 55-57. Meng Libo, Liu Huigeng, Hu Jianxin. Research on measuring system for deflection of medium and small-span bridges based on digital speckle correlation method[J]. Technology of Highway and Transport, 2013(5): 55-57.
[42] Yoneyama S, Kitagawa A, Iwata S, et al. Bridge deflection measure-ment using digital image correlation[J]. Exp Tech, 2007, 31(1): 34-40.
[43] 刘亚双. 基于数字散斑技术的桥梁检测[J]. 成都大学学报, 2013, 32 (3): 309-311. Liu Yashuang. Detection of bridges based on digital speckle technique[J]. Journal of Chengdu University(Natural Science Edition), 2013, 32 (3): 309-311.
[44] 李元海, 贾冉旭, 杨苏. 基于岩土渐进变形特征的数字散斑相关优 化分析法[J]. 岩土工程学报, 2015, 37(8): 1490-1496. Li Yuanhai, Jia Rranxu, Yang Su. Optimized method for DSCM based on progressive displacement characteristics of geotechnical materials[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1490- 1496.
[45] 赵景尧, 蔡英春. 数字图像相关方法及其在木材科学研究中的应用[J]. 世界林业研究, 2015, 28(6): 53-57. Zhao Jingyao, Cai Yingchun. Digital image correlation technology and its application to wood science[J]. World Forestry Research, 2015, 28 (6): 53-57.