Articles

Study on environmental influence of PG cemented backfilling and utilization of full phosphorus slag

  • GAN Lei ,
  • LI Xibing ,
  • FAN Yun ,
  • SHI Ying
Expand
  • School of Resources & Safety Engineering, Central South University, Changsha 410083, China

Received date: 2016-09-27

  Revised date: 2016-11-08

  Online published: 2017-07-17

Abstract

Phosphogypsum (PG) is an industrial solid waste containing a large number of pollutants, and its surface stockpile has a potentially negative impact on the environment nearby. The PG-based cemented backfill can solve the problem to a great extent. However, the negative environmental impact might be transferred into the underground when PG-based cemented backfill is filled into tunnels of mine, which is still an open question. This paper studies the change of pollutant concentrations in the leachate of PG-based backfill. The results show that the pH value of the leachate tends to be neutral with time. Before backfilling, the phosphate concentration supernatant of PG solution is 3979 mg/L, and it decreases to 1.3 mg/L when PG is made into backfilling material. In the prolonged store underground, the phosphate concentration decreases to about 0.3 mg/L. On the other hand, the concentrations of Zn, Fe, Cr, Mn, Ba, As and other elements in the leachate significantly decrease in the leachate after being cemented. Some F and Pb can dissolve in the leachate indicates that the dissolution migration mechanism and the F, P solidication technology need to be further studied. In conclusion, compared to PG surface stockpile, PG-based cemented backfill can well solidify/stabilize the harmful pollutants in PG, which could be a promising industrial process for PG disposal.

Cite this article

GAN Lei , LI Xibing , FAN Yun , SHI Ying . Study on environmental influence of PG cemented backfilling and utilization of full phosphorus slag[J]. Science & Technology Review, 2017 , 35(13) : 84 -89 . DOI: 10.3981/j.issn.1000-7857.2017.11.013

References

[1] Zirnea S, Lazar I, Foudjo B U S, et al. Cluster analysis based of geo- chemical properties of phosphogypsum dump located near bacau city in Romania[J]. Apcbee Procedia, 2013(5): 317-322.
[2] Degirmenci N. Utilization of phosphogypsum as raw and calcined mate- rial in manufacturing of building products[J]. Construction & Building Materials, 2008, 22(8): 1857-1862.
[3] 段先前, 韦俊发, 丁坚平. 贵州某磷石膏堆场岩溶渗漏污染分析[J]. 地下水, 2008, 30(1): 68-69, 118. Duan Xianqian, Wei Junfa, Ding Jianping. Analysis on pollution of karst leskage in a phosphogypsum site in Guizhou[J]. Ground Water, 2008, 30(1): 68-69, 118.
[4] 蔡榆. 贵州摆纪磷石膏尾矿库周边土壤重金属污染评价[J]. 科技创新 与品牌, 2015(10): 66-67. Cai Yu. Assessment of heavy metal pollution in soil surround the pendulum phosphogypsum tailings of Guizhou[J]. Sci-tech Innovations and Brands, 2015(10): 66-67.
[5] Bolívar J P, Martín J E, García-Tenorio R, et al. Behaviour and fluxes of natural radionuclides in the production process of a phosphoric acid plant[J]. Applied Radiation & Isotopes Including Data Instrumentation & Methods for Use in Agriculture Industry & Medicine, 2009, 67(2): 345-356.
[6] 谭明洋, 相利学, 李国龙. 磷石膏净化处理及其对水泥性能的影响[J]. 水泥工程, 2016(2): 17-18. Tan Mingyang, Xiang Lixue, Li Guolong. Purification treatment of phosphogypsum and its effect on the properties of cement[J]. Cement Engineering, 2016(2): 17-18.
[7] 王怀利, 高璐阳, 陈宏坤, 等. 我国磷石膏综合利用现状分析与展望[J]. 磷肥与复肥, 2016, 31(4): 32-34. Wang Huaili, Gao Luyang, Chen Hongkun, et al. Analysis and prospect of phosphogypsum comprehensive utilization in China[J]. Phosphate & Compound Fertilizer, 2016, 31(4): 32-34.
[8] Prasad M N V. Chapter 14-Resource potential of natural and synthetic gypsum waste[J]. Environmental Materials & Waste, 2016: 307-337.
[9] 惠兴卫. 磷石膏用作土壤调理剂的实践[C]. 贵阳: 第三届全国磷复肥/磷化工技术创新(瓮福)论坛. 全国磷复肥/磷化工技术创新, 2011. Hui Xingwei. The practice of phosphogypsum used as soil conditioner[C]. Guiyang: The Third National Phosphate & Compound Fertilizer/Phosphorus Chemical Technology Innovation Forum(Wengfu), Phosphate & Compound Fertilizer, 2011.
[10] 钱文敏, 唐芬, 许中俊, 等. 云南磷石膏综合利用现状及次生环境问 题[J]. 环境科学导刊, 2015(1): 58-60. Qian Wenmin, Tang Fen, Xu Zhongjun, et al. The present situation of comprehensive utilization of phosphogypsum and its secondary environmental problems in Yunnan province[J]. Environmental Science Survey, 2015(1): 58-60.
[11] 刘小力, 高忠民, 唐飞勇. 磷石膏充填采矿技术应用及经济环境效 益评价[J]. 武汉工程大学学报, 2011, 33(3): 107-110. Liu Xiaoli, Gao Zhongmin, Tang Feiyong. Application of phosphogypsum for cut-and-fill mining method and evaluation of its economic and environmental profits[J]. Journal of Wuhan Institute of Technology, 2011, 33(3): 107-110.
[12] Villain L, Alakangas L, B Öhlander. The effects of backfilling and sealing the waste rock on water quality at the Kimheden open-pit mine, northern Sweden[J]. Journal of Geochemical Exploration, 2013, 134(134): 99-110.
[13] Reed S M, Singh R N. Groundwater recovery problems associated with opencast mine backfills in the United Kingdom[J]. Mine Water & the Environment, 1986, 5(5): 47-73.
[14] 董霁红. 矿区充填复垦土壤重金属分布规律及主要农作物污染评价[D]. 北京: 中国矿业大学, 2008. Dong Jihong. Distribution of heavy metals in reclamation soils and their accumulation in crops[D]. Beijing: China University of Mining & Technology, 2008.
[15] Jiao H Z, Wu A X, et al. The influence of cemented paste backfill on groundwater quality[J]. Procedia Earth & Planetary Science, 2011, 2 (1): 183-188.
[16] 黎勇, 钟格梅, 黄林, 等. 广西农村饮用水水质pH指标监测结果分 析[J]. 应用预防医学, 2012, 18(3): 168-170. Li Yong, Zhong Gemei, Huang Lin, et al. Analysis on pH monitoring results of drinking water quality in rural areas of Guangxi[J]. Journal of Applied Preventive Medicine, 2012, 18(3): 168-170.
[17] 王亚平, 王岚, 许春雪, 等. pH对长江下游沉积物中重金属元素Cd、 Pb释放行为的影响[J]. 地质通报, 2012, 31(4): 594-600. Wang Yaping, Wang Lan, Xu Chunxue, et al. The influence of pH on the release behavior of heavy metal elements Cd and Pb in the sediments of the lower reaches of the Yangtze River[J]. Geological Bulletin of China, 2012, 31(4): 594-600.
[18] 范玉超, 王蒙, 邰伦伦, 等. 我国底泥重金属污染现状及其固化/稳定 化修复技术研究进展[J]. 安徽农学通报, 2016, 22(13):97-101. Fan Yuchao, Wang Meng, Tai Lunlun, et al. Heavy metal-contaminated sediments in China: A review of current situation and solidification remediation[J]. Anhui Agricultural Science Bulletin, 2016, 22(13): 97- 101.
[19] 刘锋, 王琪, 黄启飞, 等. 固体废物浸出毒性浸出方法标准研究[J]. 环境科学研究, 2008, 21(6): 9-15. Liu Feng, Wang Qi, Huang Qifei, et al. Study on the standard methods of leaching toxicity of solid waste[J]. Research of Environmental Sciences, 2008, 21(6): 9-15.
[20] Pérez-López R, Macías F, Cánovas C R, et al. Pollutant flows from a phosphogypsum disposal area to an estuarine environment: An insight from geochemical signatures.[J]. Science of the Total Environment, 2016, 553:42-51.
[21] Pérez-López R, Nieto J M, López-Coto I, et al. Dynamics of contami- nants in phosphogypsum of the fertilizer industry of Huelva (SW Spain): From phosphate rock ore to the environment[J]. Applied Geo- chemistry, 2010, 25(5): 705-715.
[22] 杨丽. 磷尾矿充填体中有害元素的溶出行为研究[D]. 贵阳: 贵州大 学, 2015. Yang Li. Study on the dissolution behavior of harmful elements in PG tailings backfill[D]. Guiyang: Guizhou University, 2015.
[23] 袁鹏, 谭建红, 官洪霞, 等. 磷石膏中有害杂质对环境影响的监测与 评价[J]. 广东化工, 2013, 40(22): 124-125. Yuan Peng, Tang Jianhong, Guan Hongxia. Monitoring and evaluation of the harmful effects on the environment of the impurities in phosphogypsum[J]. Guangdong Chemical Industry, 2013, 40(22): 124- 125.
[24] 李莉, 张卫, 白娟, 等. 重金属在水体中迁移转化过程分析[J]. 山东 水利, 2010(1): 31-33, 36. Li Li, Zhang Wei. Bai Juan, et al. Process analysis of transportation and conversion of heavy metals in water[J]. Shandong Water Resources. 2010(1): 31-33, 36.
[25] 王文涛. 水环境多种固相物质共存体系中各物质对Pb的吸附及pH 值的影响研究[D]. 吉林: 吉林大学, 2009. Wang Wentao. Study on the effect of various substances on the adsorption of Pb and pH value in water environment[D]. Jilin: Jilin University, 2009.
[26] 赵威, 席北斗, 赵越, 等. 简易填埋场垃圾渗滤液水溶性有机物对Pb (Ⅱ)迁移转化特性的影响[J]. 环境科学研究, 2014, 27(5): 527-533. Zhao Wei, Xi Beidou, Zhao Yue, et al. Effect of dissolved organic matter in simple landfill leachate on the dissolution and migration of Pb(Ⅱ)[J]. Research of Environmental Sciences, 2014, 27(5): 527-533.
Outlines

/