Articles

Progress and prospect in supercritical adsorption of shale gas

  • ZHOU Shangwen ,
  • XUE Huaqing ,
  • GUO Wei ,
  • LI Xiaobo ,
  • LU Bin
Expand
  • Key Laboratory of Unconventional Oil & Gas, China National Petroleum Corporation;PetroChina Research Institute of Petroleum Exploration & Development-Langfang, Langfang 065007, China

Received date: 2016-11-10

  Revised date: 2017-04-25

  Online published: 2017-08-16

Abstract

The supercritical adsorption is the adsorption of gas on the solid surface when the adsorption temperature is above the critical temperature. Under the condition of the shale gas reservoir, the adsorption of methane in the shale is the supercritical adsorption. The adsorbed gas is an important component of the total shale gas. Therefore, the study of the supercritical adsorption of shale gas is very important for the reserve evaluation and the development plan preparation of the shale gas reservoir. This paper reviews the research development of the supercritical adsorption of shale gas at home and abroad. It is shown that:1) compared to the coal, the methane adsorption capacity of the shale is very small. In order to meet the requirements of the shale adsorption test, pressure sensors with high accuracy in the volumetric adsorption apparatus are required, as well as an accurate magnetic suspension balance for the gravimetric adsorption apparatus; 2) the adsorption capacity measured by the isothermal adsorption experiment is the excess adsorption capacity, and the excess adsorption capacity will decline after reaching a certain pressure. So we should not confuse the excess adsorption with the absolute adsorption, which might cause the underestimation of the real adsorption capacity of the shale gas reservoir; 3) the shale gas adsorption is faced with the problem of discrepancy between theory and practice. In the future, the research of the shale gas supercritical adsorption should be conducted from two aspects:theory and experiment. We should focus on the understanding of the characteristics of the supercritical shale gas adsorption, to ultimately establish a universal and applicable theory of the shale gas supercritical adsorption and to guide practice and application.

Cite this article

ZHOU Shangwen , XUE Huaqing , GUO Wei , LI Xiaobo , LU Bin . Progress and prospect in supercritical adsorption of shale gas[J]. Science & Technology Review, 2017 , 35(15) : 63 -69 . DOI: 10.3981/j.issn.1000-7857.2017.15.009

References

[1] Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale gas sys-tems:The Mississippian Barnett shale of north central Texas as one model for thermogenic shale gas assessment[J]. AAPG Bulletin, 2007, 91(4):475-499.
[2] Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mis-sissippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12):848-861.
[3] Hill R J, Zhang Etuan, Katz B J, et al. Modeling of gas generation from the Barnett shale, Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4):501-521.
[4] Ross D J K, Bustin R M. Characterizing the shale gas resource poten-tial of Devonian-Mississippian strata in the Western Canada sedimenta-ry basin:Application of an integrated formation evaluation[J]. AAPG Bulletin, 2008, 92(1):87-125.
[5] Kinnaman T C. The economic impact of shale gas extraction:A review of existing studies[J]. Ecological Economics., 2011, 70(7):1243-1249.
[6] Ross D J K, Bustin R M. Shale gas potential of the Lower Jurassic Gor-dondale Member, northeastern British Columbia, Canada[J]. Bulletin of Canadian Petroleum Geology, 2007, 55(1):51-75.
[7] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6):689-701. Zou Caineng, Dong Dazhong, Wang Yuman, et al. Shale gas in China:Characteristics, challenges and prospects (Ⅰ)[J]. Petroleum Exploration and Development, 2015, 42(6):689-701.
[8] 陈尚斌, 朱炎铭, 王红岩, 等. 四川盆地南缘下志留统龙马溪组页岩气储层矿物成分特征及意义[J]. 石油学报, 2011, 32(5):775-782. Chen Shangbin, Zhu Yanming, Wang Hongyan, et al. Characteristics and significance of mineral compositions of Lower Silurian Longmaxi Formation shale gas reservoir in the southern margin of Sichuan Basin[J]. Acta Petrolei Sinica, 2011, 32(5):775-782.
[9] 纪文明, 宋岩, 姜振学, 等. 四川盆地东南部龙马溪组页岩微-纳米孔隙结构特征及控制因素[J]. 石油学报, 2016, 37(2):182-195. Ji Wenming, Song Yan, Jiang Zhenxue, et al. Micro-nano pore struc-ture characteristics and its control factors of shale in Longmaxi Forma-tion, southeastern Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(2):182-195.
[10] 聂海宽, 张金川, 李玉喜. 四川盆地及其周缘下寒武统页岩气聚集条件[J]. 石油学报, 2011, 32(6):959-967. Nie Haikuan, Zhang Jinchuan, Li Yuxi. Accumulation conditions of the Lower Cambrian shale gas in the Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2011, 32(6):959-967.
[11] 邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2):173-187. Zou Caineng, Zhu Rukai, Wu Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocar-bon accumulations:Taking tight oil and tight gas in China as an in-stance[J]. Acta Petrolei Sinica, 2012, 33(2):173-187.
[12] 刘树根, 马文辛, Luba Jansa, 等. 四川盆地东部地区下志留统龙马溪组页岩储层特征[J]. 岩石学报, 2011, 27(8):2239-2252. Liu Shugen, Ma Wenxin, Luba Jansa, et al. Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation, East Sichuan Basin, China[J]. Acta Petrologica Sinica, 2011, 27(8):2239-2252.
[13] Curtis J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11):1921-1938.
[14] Ambrose R J, Hartman R C, Diaz-Campos M, et al. Shale gas-inplace calculations Part I:New pore-scale considerations[J]. SPE Jour-nal, 2012, 17(1):219-229.
[15] 李玉喜, 乔德武, 姜文利, 等. 页岩气含气量和页岩气地质评价综述[J]. 地质通报, 2011, 30(2/3):308-317. Li Yuxi, Qiao Dewu, Jiang Wenli, et al. Gas content of gas-bearing shale and its geological evaluation summary[J]. Geological Bulletin of China, 2011, 30(2/3):308-317.
[16] 聂海宽, 张金川. 页岩气聚集条件及含气量计算:以四川盆地及其周缘下古生界为例[J]. 地质学报, 2012, 86(2):349-361. Nie Haikuan, Zhang Jinchuan. Shale gas accumulation condition and gas content calculation:A case study of Sichuan Basin and its periph-ery in the Lower Paleozoic[J]. Acta Geological Sinica, 2012, 86(2):349-361.
[17] Gasparik M, Bertier P, Gensterblum Y, et al. Geological controls on the methane storage capacity in organic-rich shales[J]. International Journal of Coal Geology, 2014, 123:34-51.
[18] Ji L M, Zhang T W, Milliken K L, et al. Experimental investigation of main controls to methane adsorption in clay-rich rocks[J]. Applied Geochemistry, 2012, 27(12):2533-2545.
[19] 邢华斌, 苏宝根, 杨亦文, 等. 超临界流体吸附研究进展[J]. 化工进展, 2002, 21(12):885-889. Xing Huabin, Su Baogen, Yang Yiwen, et al. Progress in supercritical fluid adsorption[J]. Chemical Industry and Engineering Progress, 2002, 21(12):885-889.
[20] 周亚平, 杨斌. 气体超临界吸附研究进展[J]. 化学通报, 2000(9):8-13. Zhou Yaping, Yang Bin. Progress in supercritical gas adsorption[J]. Chemistry Bulletin, 2000(9):8-13.
[21] 周理, 吕昌忠, 王怡林, 等. 述评超临界温度气体在多孔固体上的物理吸附[J]. 化学进展, 1999, 11(3):221-226. Zhou Li, Lü Changzhong, Wang Yilin, et al. Physisorption of gases on porous solids at above-critical temperatures[J]. Progress in Chemistry, 1999, 11(3):221-226.
[22] 周理, 李明, 周亚平. 超临界甲烷在高表面活性炭上的吸附测量及其理论分析[J]. 中国科学(B辑), 2000, 30(1):49-56. Zhou Li, Li Ming, Zhou Yaping. Experiment of adsorption of supercrit-ical methane on activated carbon and theoretical analysis[J]. Science in China (Series B), 2000, 30(1):49-56.
[23] Lu X C, Li F C, Watson A T. Adsorption measurements in Devonian shales[J]. Fuel, 1995, 74(4):599-603.
[24] 熊伟, 郭为, 刘洪林, 等. 页岩的储层特征以及等温吸附特征[J]. 天然气工业, 2012, 32(1):113-116. Xiong Wei, Guo Wei, Liu Honglin, et al. Shale reservoir characteris-tics and isothermal adsorption properties[J]. Natural Gas Industry, 2012, 32(1):113-116.
[25] 刘洪林, 王红岩. 中国南方海相页岩吸附特征及其影响因素[J]. 天然气工业, 2012, 32(9):5-9. Liu Honglin, Wang Hongyan. Absorptivity and influential factors of marine shales in South China[J]. Natural Gas Industry, 2012, 32(9):5-9.
[26] 郭为, 熊伟, 高树生, 等. 页岩气等温吸附/解吸特征[J]. 中南大学学报(自然科学版), 2013, 44(7):2836-2840. Guo Wei, Xiong Wei, Gao Shusheng, et al. Journal of Central South University (Science and Technology), 2013, 44(7):2836-2840.
[27] 郭为, 熊伟, 高树生, 等. 温度对页岩等温吸附/解吸特征影响研究[J]. 石油勘探与开发, 2013, 40(4):481-485. Guo Wei, Xiong Wei, Gao Shusheng, et al. Isothermal adsorption/de-sorption characteristics of shale gas[J]. Journal of Central South Uni-versity(Science and Technology), 2013, 40(4):481-485.
[28] 薛华庆, 王红岩, 刘洪林, 等. 页岩吸附性能及孔隙结构特征——以四川盆地龙马溪组页岩为例[J]. 石油学报, 2013, 34(5):826-832. Xue Huaqing, Wang Hongyan, Liu Honglin, et al. Absorptivity capaci-ty and aperture distribution characteristics of shales taking the Long-maxi formation shale of Sichuan Basin as an example[J]. Acta Petrolei Sinica, 2013, 34(5):826-832.
[29] Zhang T W, Ellis G S, Ruppel S C, et al. Effect of organic matter type and thermal maturity on methane adsorption in shale gas systems[J]. Organic Geochemistry, 2012, 47:120-131.
[30] Gasparik M, Ghanizadeh A, Bertier P, et al. High-pressure methane sorption isotherms of black shales from the Nethelands[J]. Energy & Fuels, 2012, 26(8):4995-5004.
[31] Tian H, Li T F, Zhang T W, et al. Characterization of methane adsorp-tion on overmature Lower Silurian-Upper Ordovician shales in Sich-uan Basin, southwest China:Experimental results and geological impli-cations[J]. International Journal of Coal Geology, 2016, 156:36-49.
[32] Lafortune S, Adelise F, Rhenal G D R, et al. Assessing CO2 adsorp-tion capacities onto shales through gravimetric experiments:A first step in the feasibility study of coupling "fracking" with carbon storage[J]. Energy Procedia, 2014, 63:5933-5937.
[33] Heller R, Zoback M. Adsorption of methane and carbon dioxide on gas shale and pure mineral samples[J]. Journal of Unconventional Oil and Gas Resources, 2014, 8:14-24.
[34] 俞凌杰, 范明, 陈红宇, 等. 富有机质页岩高温高压重量法等温吸附实验[J]. 石油学报, 2015, 36(5):557-563. Yu Lingjie, Fan Ming, Chen Hongyu, et al. Isothermal adsorption ex-periment of organic-rich shale under high temperature and pressure using gravimetric method[J]. Acta Petrolei Sinica, 2015, 36(5):557-563.
[35] 张庆玲, 张遂安. GB/T 19560-2008煤的高压等温吸附试验方法[S]. 北京:中国标准出版社, 2008. Zhang Qingling, Zhang Suian. GB/T 19560-2008 Experimental meth-od of high-pressure isothermal adsorption to coal[S]. Beijing:China Standard Press, 2008.
[36] Belmabkhout Y, Frere M, Weireld G D. High-pressure adsorption measurements:A comparative study of the volumetric and gravimetric methods[J]. Measurement Science and Technology, 2004, 15:848-858.
[37] Ross D J K, Bustin R M. Impact of mass balance calculations on ad-sorption capacities in microporous shale gas reservoirs[J]. Fuel, 2007, 86:2696-2706.
[38] 解晨, 郑青榕, 廖海峰, 等. 标定体积对超临界温度气体吸附等温线的影响[J]. 武汉理工大学学报(交通科学与工程版), 2012, 36(1):158-160. Xie Chen, Zheng Qingrong, Liao Haifeng, et al. Influence of calibra-tion volume on adsorption isotherms at supercritical temperature[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2012, 36(1):158-160.
[39] Rani S, Prusty B K, Pal S K. Comparison of void volume for volumet-ric adsorption studies on shales from India[J]. Journal of Natural Gas Science and Engineering, 2015, 26:725-729.
[40] 张庆玲. 页岩容量法等温吸附实验中异常现象分析[J]. 煤田地质与勘探, 2015, 43(5):31-33. Zhang Qingling. The analysis of abnormal phenomena in shale isother-mal absorption volumetric test[J]. Coal Geology and Exploration, 2015, 43(5):31-33.
[41] Do D D, Do H D. Adsorption of supercritical fluids in non-porous and porous carbons:Analysis of adsorbed phase volume and density[J]. Carbon, 2003, 41(9):1777-1791.
[42] Zhou L, Bai S P. Adsorption of nitrogen on silica gel over a large range of temperatures[J]. Adsorption, 2002, 8(1):79-87.
[43] 盛茂, 李根生, 陈立强, 等. 页岩气超临界吸附机理分析及等温吸附模型的建立[J]. 煤炭学报, 2014, 39(1):179-183. Sheng Mao, Li Gensheng, Chen Liqiang, et al. Mechanisms analysis of shale-gas supercritical adsorption and modeling of isorption adsorption[J]. Journal of China coal society, 2014, 39(1):179-183.
[44] 王玉普, 左罗, 胡志明, 等. 页岩高温高压吸附实验及吸附模型[J]. 中南大学学报(自然科学版), 2015, 46(11):4129-4135. Wang Yupu, Zuo Luo, Hu Zhiming, et al. Experiment of supercritical methane adsorption on shale and adsorption modeling[J]. Journal of Central South University (Science and Technology), 2015, 46(11):4129-4135.
[45] 张庆玲, 曹利戈. 煤的等温吸附测试中数据处理问题研究[J]. 煤炭学报, 2003, 28(2):131-135. Zhang Qingling, Cao Lige. Study of data processing in coal sorption isotherm testing[J]. Journal of China Coal Society, 2003, 28(2):131-135.
[46] 方俊华, 朱炎铭, 魏伟, 等. 页岩等温吸附异常初探[J]. 吐哈油气, 2010, 15(4):317-320. Fang Junhua, Zhu Yanming, Wei wei, et al. Preliminary study of ab-normalities of shale isothermal adsorption experiment[J]. Tuha Oil and Gas, 2010, 15(4):317-320.
[47] 聂海宽, 张金川, 马晓彬, 等. 页岩等温吸附气含量负吸附现象初探[J]. 地学前缘, 2013, 20(6):282-288. Nie Haikuan, Zhang Jinchuan, MaXiaobin, et al. A preliminary study of negative adsorption phenomena of shale adsorption gas content by isothermal adsorption[J]. Earth Science Frontiers, 2013, 20(6):282-288.
[48] 林腊梅, 张金川, 韩双彪, 等. 泥页岩储层等温吸附测试异常探讨[J]. 油气地质与采收率, 2012, 19(6):30-33. Lin Lamei, Zhang Jinchuan, Han Shuangbiao, et al. Study on abnor-mal curves of isothermal adsorption of shale[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(6):30-33.
[49] 杨兆彪, 秦勇, 高弟, 等. 超临界条件下煤层甲烷视吸附量、真实吸附量的差异及其地质意义[J]. 天然气工业, 2011, 31(4):13-16. Yang Zhaobiao, Qin Yong, Gao Di, et al. Differences between appar-ent and true adsorption quantity of coalbed methane under supercriti-cal conditions and their geological significance[J]. Natural Gas Indus-try, 2011, 31(4):13-16.
[50] 刘圣鑫, 钟建华, 马寅生, 等. 柴东石炭系页岩微观孔隙结构与页岩气等温吸附研究[J]. 中国石油大学学报(自然科学版), 2015, 39(1):33-42. Liu Shengxin, Zhong Jianhua, Ma Yinsheng, et al. Study of microscop-ic pore structure and adsorption isothermal of carboniferous shale, Eastern Qaidam Basin[J]. Journal of China University of Petroleum (Edition of Natural Sciences), 2015, 39(1):33-42.
[51] 侯晓伟, 王猛, 刘宇, 等. 页岩气超临界状态吸附模型及其地质意义[J]. 中国矿业大学学报, 2016, 45(1):83-90. Hou Xiaowei, Wang Meng, Liu Yu, et al. Supercritical adsorption mod-el of shale gas and its geological significance[J]. Journal of China Uni-versity of Mining & Technology, 2016, 45(1):83-90.
[52] Chareonsuppanimit P, Mohammad S A, Robinson R L J, et al. Highpressure adsorption of gases on shales:Measurements and modeling[J]. International Journal of Coal Geology, 2012, 95(1):34-46.
[53] 熊健, 刘向君, 梁利喜, 等. 页岩气超临界吸附的Dubibin-Astakhov改进模型[J]. 石油学报, 2015, 36(7):849-857. Xiong Jian, Liu Xiangjun, Liang Lixi, et al. Improved Dubibin-Astak-hov model for shale gas supercritical adsorption[J]. Acta Petrolei Sini-ca, 2015, 36(7):849-857.
[54] Wang Y, Zhu Y M, Liu S M, et al. Methane adsorption measurements and modeling for organic-rich marine shale samples[J]. Fuel, 2016, 172:301-309.
[55] 周尚文, 王红岩, 薛华庆, 等. 页岩过剩吸附量与绝对吸附量的差异及页岩气储量计算新方法[J]. 天然气工业, 2016, 36(11):12-20. Zhou Shangwen, Wang Hongyan, Xue Huaqing, et al. Difference be-tween excess and absolute adsorption capacity of shale and a new shale gas reserve calculation method[J]. Natural Gas Industry, 2016, 36(11):12-20.
[56] 周尚文, 薛华庆, 郭伟, 等. 基于重量法的页岩气超临界吸附特征实验研究[J]. 煤炭学报, 2016, 41(11):2806-2812. Zhou Shangwen, Xue Huaqing, Guo Wei, et al. Supercritical isother-mal adsorption characteristics of shale gas based on gravimetric meth-od[J]. Journal of China Coal Society, 2016, 41(11):2806-2812.
[57] 董大忠, 邹才能, 戴金星, 等. 中国页岩气发展战略对策建议[J]. 天然气地球科学, 2016, 27(3):397-406. Dong Dazhong, Zou Caineng, Dai Jinxing, et al. Suggestions on the de-velopment strategy of shale gas in China[J]. Natural Gas Geoscience, 2016, 27(3):397-406.
Outlines

/