Special lssues

Clinical practice of precision medicine

  • SUN Xiaoning ,
  • GONG Mengchun ,
  • ZHANG Shuyang
Expand
  • Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China

Received date: 2017-06-20

  Revised date: 2017-08-01

  Online published: 2017-08-26

Abstract

Clinical trials on various types of cancers come up with abundant fruits, as benefited from the blooming of the precision medicine, the idea of which has been developed significantly in recent years. The clinical practice of the precision medicine, however, is still in its infancy. Rapid growing demands for informative and reliable data-/knowledge-bases of biological and medical science call for an integrated data analysis of multiple "-omics" data and a novel clinical trial design tailored for the precision medical research. The introduction of the Electric Health Record (HER) and the standardized ontology system is essential for the optimal operation of the clinical decision support systems (CDSS). It is urgent to have a proper policy on the informed consent, the privacy and the confidentiality, and a targeted genomic screening. Guidelines ensuring the maximized efficacy and the minimal false positive rate is yet to be sought for. Professional education is of great help for the proper application of the genomic testing in the clinical practice.

Cite this article

SUN Xiaoning , GONG Mengchun , ZHANG Shuyang . Clinical practice of precision medicine[J]. Science & Technology Review, 2017 , 35(16) : 13 -19 . DOI: 10.3981/j.issn.1000-7857.2017.16.001

References

[1] Collins F S, Varmus H. A new initiative on precision medicine[J]. New England Journal of Medicine, 2015, 372(9):793-795.
[2] HM Government. Strategy for UK life sciences:one year on[EB/OL].[2012-12-31]. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/36684/12-1346-strategy-for-uk-life-sciencesone-year-on.pdf.
[3] Ashley E A. The precision medicine initiative:A new national effort[J]. Journal of the American Medical Association, 2015, 313(21):2119-2120.
[4] Welter D, MacArthur J, Morales J, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations[J]. Nucleic Acids Research, 2014, 42:D1001-D1006.
[5] MacArthur J, Bowler E, Cerezo M, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog)[J]. Nu-cleic Acids Research, 2017, 45(D1):D896-D901.
[6] National Human Genome Research Institute. eMERGE Phase 1 RFA[EB/OL].[2007-03-27]. http://grants.nih.gov/grants/guide/rfa-files/RFAHG-07-005.html.
[7] Gottesman O, Kuivaniemi H, Tromp G, et al. The Electronic Medical Records and Genomics (eMERGE) Network:Past, present, and future[J]. Genetics in Medicine, 2013, 15(10):761-771.
[8] National Human Genome Research Institute. eMERGE Phase Ⅱ RFA[EB/OL].[2011-07-06]. http://grants.nih.gov/grants/guide/rfa-files/RFAHG-10-009.html.
[9] eMERGE. PheKb:Phenotype knowledgeBase[EB/OL].[2016-03-28]. http://www.PheKb.org.
[10] Rasmussen-Torvik L J, Stallings S C, Gordon A S, et al. Design and anticipated outcomes of the eMERGE-PGx project:A multicenter pi-lot for preemptive pharmacogenomics in electronic health record sys-tems[J]. Clinical Pharmacology and Therapeutics, 2014, 96(4):482-489.
[11] Kullo I J, Haddad R, Prows C A, et al. Return of results in the genom-ic medicine projects of the eMERGE network[J]. Frontiers in Genet-ics, 2014, doi:10.3389/fgene.2014.00050.
[12] Bradfield J P, Taal H R, Timpson N J, et al. A genome-wide associa-tion meta-analysis identifies new childhood obesity loci[J]. Nature Ge-netics, 2012, 44(5):526-531.
[13] Manolio T A, Chisholm R L, Ozenberger B, et al. Implementing ge-nomic medicine in the clinic:The future is here[J]. Genetics in Medi-cine, 2013, 15(4):258-267.
[14] Weitzel K W, Alexander M, Bernhardt B A, et al. The IGNITE net-work:a model for genomic medicine implementation and research[J]. BMC Medical Genomics, 2016, 9(1), doi:10.1186/s12920-015-0162-5.
[15] Ritchie M D, Holzinger E R, Li R, et al. Methods of integrating data to uncover genotype-phenotype interactions[J]. Nature Reviews Genet-ics, 2015, 16(2):85-97.
[16] Vilhjalmsson B J, Nordborg M. The nature of confounding in genomewide association studies[J]. Nature Reviews Genetics, 2013, 14(1):1-2.
[17] Raychaudhuri S, Plenge R M, Rossin E J, et al. Identifying Relation-ships among genomic disease regions:Predicting genes at pathogenic snp associations and rare deletions[J]. PLoS Genetics, 2009, 5(6):e10005801.
[18] Crooke P S, Ritchie M D, Hachey D L, et al. Estrogens, enzyme vari-ants, and breast cancer:A risk model[J]. Cancer Epidemiology, Bio-markers & Prevention, 2006, 15(9):1620-1629.
[19] Sharaf R N, Butte A J, Montgomery K D, et al. Computational predic-tion and experimental validation associating FABP-1 and pancreatic adenocarcinoma with diabetes[J]. BMC Gastroenterology, 2011, 11(1):5.
[20] Maslove D M, Lamontagne F, Marshall J C, et al. A path to precision in the ICU[J]. Critical Care, 2017, 21(1):79.
[21] Lauer M S, D'Agostino R B, Sr. The randomized registry trial——the next disruptive technology in clinical research?[J]. New England Jour-nal of Medicine, 2013, 369(17):1579-1581.
[22] Frobert O, Lagerqvist B, Olivecrona G K, et al. Thrombus aspiration during ST-segment elevation myocardial infarction[J]. New England Journal of Medicine, 2013, 369(17):1587-1597.
[23] Zanetti R, Schmidtmann I, Sacchetto L, et al. Completeness and timeli-ness:Cancer registries could/should improve their performance[J]. Eu-ropean Journal of Cancer, 2015, 51(9):1091-1098.
[24] 冯时, 弓孟春, 张抒扬. 中国国家罕见病注册系统及其队列研究:愿景与实施路线[J]. 中华内分泌代谢杂志, 2016, 32(12):977-982. Feng Shi, Gong Mengchun, Zhang Shuyang. The national rare diseases registry system of China and the related cohorts studies:Vision and roadmap[J]. Chinese Journal of Endocrinology and Metabolism, 2016, 32(12):977-982.
[25] Iyer G, Hanrahan A J, Milowsky M I, et al. Genome sequencing identi-fies a basis for everolimus sensitivity[J]. Science, 2012, 338(6104):221.
[26] Holroyd-Leduc J M, Lorenzetti D, Straus S E, et al. The impact of the electronic medical record on structure, process, and outcomes within primary care:a systematic review of the evidence[J]. Journal of the American Medical Informatics Association, 2011, 18(6):732-737.
[27] Castaneda C, Nalley K, Mannion C, et al. Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine[J]. Journal of Clinical Bioinformatics, 2015, 5(1):4.
[28] Chabra S. International Classification of Diseases, 10th Revision, cod-ing for prematurity:Need for standardized nomenclature[J]. The Health Care Manager, 2015, 34(2):123-127.
[29] Millar J. The Need for a Global Language-SNOMED CT Introduction[J]. Studies in Health Technology and Informatics, 2016, 225:683-685.
[30] Robinson P N, Mundlos S. The human phenotype ontology[J]. Clinical Genetics, 2010, 77(6):525-534.
[31] Chinese Human Phenotype Ontology Consortium. CHPO[DB/OL].[2017-03-31]. http://wiki.chinahpo.org/index.php/CHPO.
[32] Schiff G D, Hasan O, Kim S, et al. Diagnostic error in medicine:Anal-ysis of 583 physician-reported errors[J]. Archives of Internal Medi-cine, 2009, 169(20):1881-1887.
[33] Singh H, Giardina T D, Meyer A N D, et al. Types and Origins of Di-agnostic Errors in Primary Care Settings[J]. JAMA Internal Medicine, 2013, 173(6):418-425.
[34] Osheroff J A, Teich J M, Middleton B, et al. A roadmap for national action on clinical decision support[J]. Journal of the American Medi-cal Informatics Association, 2007, 14(2):141-145.
[35] Kuperman G J, Bobb A, Payne T H, et al. Medication-related clinical decision support in computerized provider order entry systems:A re-view[J]. Journal of the American Medical Informatics Association, 2007, 14(1):29-40.
[36] 弓孟春, 王慧君, 卢宇蓝, 等. 药物基因组学临床部署的顶层设计[J]. 中国循证儿科杂志, 2016(3):161-167. Gong Mengchun, Wang Huijun, Lu Yulan, et al. Design of Clinical Practice of Pharmacogenomics[J]. Chinese Journal of Evidence-Based Pediatrics, 2016(3):161-167.
[37] Caudle K E, Klein T E, Hoffman J M, et al. Incorporation of pharma-cogenomics into routine clinical practice:The Clinical Pharmacogenet-ics Implementation Consortium (cpic) guideline development process[J]. Current Drug Metabolism, 2014, 15(2):209-217.
[38] Hoffman J M, Dunnenberger H M, Kevin Hicks J, et al. Developing knowledge resources to support precision medicine:principles from the Clinical Pharmacogenetics Implementation Consortium (CPIC)[J]. Journal of the American Medical Informatics Association, 2016, 23(4):796-801.
[39] Graber M L, Franklin N, Gordon R. Diagnostic error in internal medi-cine[J]. Archives of Internal Medicine, 2005, 165(13):1493-1499.
[40] Ormond K E, Cho M K. Translating personalized medicine using new genetic technologies in clinical practice:The ethical issues[J]. Person-alized Medicine, 2014, 11(2):211-222.
[41] Fiore R N, Goodman K W. Precision medicine ethics:selected issues and developments in next-generation sequencing, clinical oncology, and ethics[J]. Current Opinion in Oncology, 2016, 28(1):83-87.
[42] McGowan M L, Settersten R A, Juengst E T, et al. Integrating genom-ics into clinical oncology:Ethical and social challenges from propo-nents of personalized medicine[J]. Urologic Oncology-Seminars And Original Investigations, 2014, 32(2):187-192.
[43] Hazin R, Brothers K B, Malin B A, et al. Ethical, legal, and social im-plications of incorporating genomic information into electronic health records[J]. Genetics in Medicine, 2013, 15(10):810-816.
[44] Green R C, Berg J S, Grody W W, et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequenc-ing[J]. Genetics in Medicine, 2013, 15(7):565-574.
[45] Directors A B o. ACMG policy statement:Updated recommendations regarding analysis and reporting of secondary findings in clinical ge-nome-scale sequencing[J]. Genetics in Medicine, 2015, 17(1):68-69.
[46] Jarvik G P, Amendola L M, Berg J S, et al. Return of genomic results to research participants:The floor, the ceiling, and the choices in be-tween[J]. American Journal of Human Genetics, 2014, 94(6):818-826.
[47] Middleton A, Morley K I, Bragin E, et al. No expectation to share inci-dental findings in genomic research[J]. The Lancet, 2015, 385(9975):1289-1290.
[48] Weiner C. Anticipate and communicate:Ethical management of inci-dental and secondary findings in the clinical, research, and direct-toconsumer contexts (December 2013 report of the Presidential Commis-sion for the Study of Bioethical Issues)[J]. American Journal of Epide-miology, 2014, 180(6):562-564.
[49] Murphy Bollinger J, Bridges J F, Mohamed A, et al. Public preferenc-es for the return of research results in genetic research:A conjoint analysis[J]. Genetics in Medicine, 2014, 16(12):932-939.
[50] Bombard Y. Translating personalized genomic medicine into clinical practice:evidence, values, and health policy[J]. Genome, 2015, 58(12):491-497.
[51] Green R C, Lautenbach D, McGuire A L. GINA, genetic discrimina-tion, and genomic medicine[J]. New England Journal of Medicine, 2015, 372(5):397-399.
[52] Vassy J L, Lautenbach D M, McLaughlin H M, et al. The MedSeq Project:a randomized trial of integrating whole genome sequencing in-to clinical medicine[J]. Trials, 2014, doi:10.1186/1745-6215-15-85.
[53] Bombard Y, Rozmovits L, Trudeau M E, et al. Patients' perceptions of gene expression profiling in breast cancer treatment decisions[J]. Cur-rent Oncology, 2014, 21(2):E203-E211.
[54] Torjesen I. Genomes of 100000 people will be sequenced to create an open access research resource[J]. BMJ, 2013, doi:10.1136/bmj.f6690.
[55] Bonter K, Desjardins C, Currier N, et al. Personalised medicine in Canada:A survey of adoption and practice in oncology, cardiology and family medicine[J]. BMJ Open, 2011, 1(1):e000110.
[56] Demmer L A, Waggoner D J. Professional medical education and ge-nomics[J]. Annual Review of Genomics and Human Genetics, 2014, 15:507-516.
[57] Korf B R. Genetics and genomics education:the next generation[J]. Ge-netics in Medicine, 2011, 13(3):201-202.
[58] Crawford D C, Crosslin D R, Tromp G, et al. eMERGEing progress in genomics-the first seven years[J]. Frontiers in Genetics, 2014, 5:184.
[59] Kho A N, Hayes M G, Rasmussen-Torvik L, et al. Use of diverse elec-tronic medical record systems to identify genetic risk for type 2 diabe-tes within a genome-wide association study[J]. Journal of the Ameri-can Medical Informatics Association, 2012, 19(2):212-218.
[60] Sperber N R, Carpenter J S, Cavallari L H, et al. Challenges and strat-egies for implementing genomic services in diverse settings:experienc-es from the Implementing GeNomics In pracTicE (IGNITE) network[J]. BMC Medical Genomics, 2017, 10(1):35
Outlines

/