Special lssues

Healthcare big data and the precise medication for rare diseases

  • WU Zhihui ,
  • WANG Fei ,
  • JIANG Zhaoyun ,
  • MIN Haowei ,
  • WANG Xinwei ,
  • GONG Mengchun ,
  • SHI Wenzhao
Expand
  • 1. Digital China Health Technologies Corporation, Beijing 100080, China;
    2. Central Laboratories, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China

Received date: 2017-06-20

  Revised date: 2017-08-02

  Online published: 2017-08-26

Abstract

The rapid development of the ubiquitous computing and wearable devices witnesses a new challenge in the natural hand gesture recognition:to free the users from the constraints of the environment and the devices and help the users interact with the environment in a natural and effective way. And the mid-air gesture recognition is one of the effective methods, capable of dealing with the challenge. This paper describes the definition of the mid-air gesture at first, and then analyzes and summarizes the existing hand gesture recognition methods, based on the computer vision, the ultrasonic signal and the electromagnetic wave. At last, this paper discusses the applications of the mid-air gesture recognition, some open questions and the development in the future.

Cite this article

WU Zhihui , WANG Fei , JIANG Zhaoyun , MIN Haowei , WANG Xinwei , GONG Mengchun , SHI Wenzhao . Healthcare big data and the precise medication for rare diseases[J]. Science & Technology Review, 2017 , 35(16) : 20 -25 . DOI: 10.3981/j.issn.1000-7857.2017.16.002

References

[1] 谷景亮, 鲁艳芹, 钟彩霞, 等. 国外罕见病药物政策发展现状对比分析[J]. 卫生软科学, 2013, 27(7):393-396. Gu Jingliang, Lu Yanqin, Zhong Caixia, et al. Comparative analysis to rare disease pharmaceutical policy development status in foreign coun-tries[J]. Soft Science of Health, 2013, 27(7):393-396.
[2] Keiser M J, Setola V, Irwin J J, et al. Predicting new molecular targets for known drugs[J]. Nature, 2009, 462(7270):175-181.
[3] Nidhi N, Glick M, Davies J W, et al. Prediction of biological targets for compounds using multiple-category bayesian models trained on che-mogenomics databases[J]. Journal of Chemical Information & Modeling, 2006, 46(3):1124-1133.
[4] Cheng T, Li Q, Wang Y, et al. Identifying compound-target associa-tions by combining bioactivity profile similarity search and public data-bases mining[J]. Journal of Chemical Information and Modeling, 2011, 51(9):2440-2448.
[5] Zhao S, Li S. Network-based relating pharmacological and genomic spaces for drug target identification[J]. PloS One, 2010, 5(7):e11764.
[6] Nölting S, Grossman A B. Signaling pathways in pheochromocytomas and paragangliomas:Prospects for future therapies[J]. Endocrine Pathol-ogy, 2012, 23(1):21-33.
[7] Björklund P, Pacak K, Crona J. Precision medicine in pheochromocyto-ma and paraganglioma:Current and future concepts[J]. Journal of Inter-nal Medicine, 2016, 280(6):559-573.
[8] Castro-Vega L J, Letouzé E, Burnichon N, et al. Multi-omics analysis defines core genomic alterations in pheochromocytomas and paraganglio-mas[J]. Nature Communications, 2015, 6:6044.
[9] Abifadel M, Varret M, Rabès J P, et al. Mutations in PCSK9 cause auto-somal dominant hypercholesterolemia[J]. Nature Genetics, 2003, 34(2):154-156.
[10] Baker G A, Bromley R L, Briggs M, et al. IQ at 6 years after in utero exposure to antiepileptic drugs A controlled cohort study[J]. Neurolo-gy, 2015, 84(4):382-390.
[11] Novac N. Challenges and opportunities of drug repositioning[J]. Trends in Pharmacological Sciences, 2013, 34(5):267-272.
[12] 田苗, 田红, 解学星, 等. 罕见病用药现状分析[J]. 现代药物与临床, 2014, 29(7):701-707. Tian Miao, Tian Hong, Xie Xuexing, et al. The development of orphan drugs[J]. Drugs & Clinic, 2014, 29(7):701-707.
[13] Xu R, Wang Q Q. PhenoPredict:A disease phenome-wide drug reposi-tioning approach towards schizophrenia drug discovery[J]. Journal of Biomedical Informatics, 2015, 56:348-355.
[14] Denny J C, Bastarache L, Ritchie M D, et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data[J]. Nature Biotechnology, 2013, 31(12):1102-1111.
[15] Aronson A R, Lang F M. An overview of MetaMap:historical perspec-tive and recent advances[J]. Journal of the American Medical Informat-ics Association, 2010, 17(3):229-236.
[16] Rastegarmojarad M, Ye Z, Kolesar J M, et al. Opportunities for drug repositioning from phenome-wide association studies[J]. Nature Bio-technology, 2015, 33(4):342-345.
[17] MacArthur D G, Balasubramanian S, Frankish A, et al. A systematic survey of loss-of-function variants in human protein-coding genes[J]. Science, 2012, 335(6070):823-828.
[18] 1000 Genomes Project Consortium. A global reference for human ge-netic variation[J]. Nature, 2015, 526(7571):68-74.
[19] Maaroufi M, Choquet R, Landais P, et al. Towards data integration au-tomation for the French rare disease registry[C]//AMIA Annual Sympo-sium Proceedings. Bethesda:American Medical Informatics Associa-tion, 2015, 2015:880.
[20] Roy A J, Van den Bergh P, Van Damme P, et al. Early stages of build-ing a rare disease registry, methods and 2010 data from the Belgian Neuromuscular Disease Registry (BNMDR)[J]. Acta Neurologica Belgi-ca, 2015, 115(2):97-104.
[21] Tattersfield A E, Glassberg M K. Lymphangioleiomyomatosis:A nation-al registry for a rare disease.[J]. American Journal of Respiratory & Critical Care Medicine, 2006, 173(1):2-4.
[22] Nagel G, Ünal H, Rosenbohm A, et al. Implementation of a popula-tion-based epidemiological rare disease registry:Study protocol of the amyotrophic lateral sclerosis (ALS)-registry Swabia[J]. BMC Neurolo-gy, 2013, 13(1):22.
[23] 冯时, 弓孟春, 张抒扬. 中国国家罕见病注册系统及其队列研究:愿景与实施路线[J]. 中华内分泌代谢杂志, 2016, 32(12):977-982. Feng Shi, Gong Mengchun, Zhang Shuyang. The national rare diseases registry system of China and the related cohort studies:Vision and roadmap[J]. Chinese Journal of Endocrinology and Metabolism, 2016, 32(12):977-982.
[24] 郭奕斌, 李荣. 罕见遗传性骨病大家系调查[J]. 中华骨科杂志, 2014(8):880-882. Guo Yibin, Li Rong. Rare hereditary bone disease family survey[J]. Chinese Journal of Orthopaedics, 2014(8):880-882.
[25] Johnston L, Thompson R, Turner C, et al. The impact of integrated omics technologies for patients with rare diseases[J]. Expert Opinion on Orphan Drugs, 2014, 2(11):1211-1219.
[26] 谢兵兵, 杨亚东, 丁楠,等. 整合分析多组学数据筛选疾病靶点的精准医学策略[J]. 遗传, 2015, 37(7):655-663. Xie Bingbing, Yang Yadong, Ding Nan, et al. Identification of disease targets for precision medicine by integrative analysis of multi-omics data[J]. Hereditas, 2015, 37(7):655-663.
[27] Yoon S H, Han M J, Jeong H, et al. Comparative multi-omics systems analysis of Escherichia coli strains B and K-12[J]. Genome biology, 2012, 13(5):R37.
[28] Zhang W, Liu Y, Sun N, et al. Integrating genomic, epigenomic, and transcriptomic features reveals modular signatures underlying poor prognosis in ovarian cancer[J]. Cell Reports, 2013, 4(3):542-553.
[29] 王锋. 基于稀疏偏最小二乘算法的生物组学数据融合算法研究[D]. 长春:吉林大学, 2012. Wang Feng. Research into biological omics datasets integration based on sparse partial least-square algorithm[D]. Changchun:Jinlin Univer-sity, 2012.
[30] 李昀泽. 基于潜在语义分析的病历文本挖掘应用研究[D]. 杭州:浙江大学, 2015. Li Yunze. Research and apply on patient record text mining based on latent semantic analysis[D]. Hangzhou:Zhejiang University, 2015.
[31] Ananiadou S, Kell D B, Tsujii J. Text mining and its potential applica-tions in systems biology[J]. Trends in Biotechnology, 2006, 24(12):571-579.
[32] 史航, 高雯珺, 崔雷. 生物医学文本挖掘研究热点分析[J]. 中华医学图书情报杂志, 2016, 25(2):27-33. Shi Hang, Gao Wenjun, Cui Lei. Hotspots in text mining of biomedial field[J]. Chinese Journal of Medical Library and Information Science, 2016, 25(2):27-33.
[33] Huang M, Zhu X, Hao Y, et al. Discovering patterns to extract pro-tein-protein interactions from full texts[J]. Bioinformatics, 2004, 20(18):3604-3612.
[34] Hao Y, Zhu X, Huang M, et al. Discovering patterns to extract pro-tein-protein interactions from the literature:Part Ⅱ[J]. Bioinformatics, 2005, 21(15):3294-3300.
[35] Huang M, Zhu X, Li M. A hybrid method for relation extraction from biomedical literature[J]. International Journal of Medical Informatics, 2006, 75(6):443-455.
[36] 龚凡, 王梦婕, 阮彤, 等. 电子病历文本症状自动识别方法[J]. 医学信息学杂志, 2016, 37(7):7-14. Gong Fan, Wang Mengjie, Ruan Tong, et al. Automatic recognition methods of symptoms in texts of electronic medical records[J]. Journal of Medical Intelligence, 2016, 37(7):7-14.
[37] Polajnar T. Survey of text mining of biomedical corpora[J].[2009-08-20]. http://www.brc.des.gla.ac.uk/tamara/surveyoftm.pdf, 2006.
[38] 柴华, 路海明, 刘清晨. 中医自然语言处理研究方法综述[J]. 医学信息学杂志, 2015, 36(10):58-63. Chai Hua, Lu Haiming, Liu Qingchen. Overview of Research Methods for Natural Language Processing in Traditional Chinese Medicine[J]. Journal of Medical Informatics, 2015, 36(10):58-63.
[39] Ohno-Machado L. Data and the clinical decision support loop[J]. Jour-nal of the American Medical Informatics Association, 2016, 23(e1):e1.
[40] Lang R D. In search of the missing link:Data access and the next gen-eration of CDSS[J]. Journal of Healthcare Information Management, 2002, 16(4):2.
[41] Bietz M J, Bloss C S, Calvert S, et al. Opportunities and challenges in the use of personal health data for health research[J]. Journal of the American Medical Informatics Association, 2015, 23(e1):e42-e48.
[42] Hintzsche J, Kim J, Yadav V, et al. IMPACT:a whole-exome sequenc-ing analysis pipeline for integrating molecular profiles with actionable therapeutics in clinical samples[J]. Journal of the American Medical Informatics Association, 2016, 23(4):721-730.
[43] 杨春华, 王天津, 黄思敏,等. 支持精准医疗的国外临床决策支持系统[J]. 中华医学图书情报杂志, 2016, 25(2):14-19. Yang Chunhua, Wang Tianjin, Huang Simin, et al. Precision medi-cine-oriented clinical decision supporting system in foreign countries[J]. Chinese Journal of Medical Library and Information Science, 2016, 25(2):14-19.
Outlines

/