[1] Collins F S, Varmus H. A new initiative on precision medicine[J]. New England Journal of Medicine, 2015, 372(9):793-795.
[2] De Vrueh R Be D H J. Priority medicines for Europe and the world:A public health approach to innovation[R]. WHO, 2013.
[3] Tambuyzer E. Rare diseases, orphan drugs and their regulation:Ques-tions and misconceptions[J]. Nature Reviews Drug Discovery, 2010, 9(12):921-929.
[4] Taylor J P, Brown R H, Jr Cleveland D W. Decoding ALS:From genes to mechanism[J]. Nature, 2016, 539(7628):197-206.
[5] Zoccolella S, Beghi E, Palagano G, et al. Predictors of long survival in amyotrophic lateral sclerosis:a population-based study[J]. Journal of the Neurological Science, 2008, 268(1-2):28-32.
[6] Creemers H, Grupstra H, Nollet F, et al. Prognostic factors for the course of functional status of patients with ALS:A systematic review[J]. Journal of Neurology, 2015, 262(6):1407-1423.
[7] Al-Chalabi A, Van Den Berg L H, Veldink J. Gene discovery in amyo-trophic lateral sclerosis:Implications for clinical management[J]. Na-ture Reviews Neurology, 2017, 13(2):96-104.
[8] Kaur S J, Mckeown S R, Rashid S. Mutant SOD1 mediated pathogene-sis of Amyotrophic Lateral Sclerosis[J]. Gene, 2016, 577(2):109-118.
[9] Deng H X, Chen W, Hong S T, et al. Mutations in UBQLN2 cause dom-inant X-linked juvenile and adult-onset ALS and ALS/dementia[J]. Na-ture, 2011, 477(7363):211-215.
[10] Fecto F, Yan J, Vemula S P, et al. SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis[J]. Archives of Neurology, 2011, 68(11):1440-1446.
[11] Wong Y C, Holzbaur E L. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupt-ed by an ALS-linked mutation[J]. Proceedings of National Academy of Sciences of the U S A, 2014, 111(42):E4439-E4448.
[12] Chen H J, Anagnostou G, Chai A, et al. Characterization of the proper-ties of a novel mutation in VAPB in familial amyotrophic lateral scle-rosis[J]. Journal of Biological Chemistry, 2010, 285(51):40266-40281.
[13] Kabashi E, Valdmanis P N, Dion P, et al. TARDBP mutations in indi-viduals with sporadic and familial amyotrophic lateral sclerosis[J]. Na-ture Genetics, 2008, 40(5):572-574.
[14] Kwiatkowski T J, Jr., Bosco D A, Leclerc A L, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis[J]. Science, 2009, 323(5918):1205-1208.
[15] Renton A E, Majounie E, Waite A, et al. A hexanucleotide repeat ex-pansion in C9ORF72 is the cause of chromosome 9p21-linked ALSFTD[J]. Neuron, 2011, 72(2):257-268.
[16] Smith R A, Miller T M, Yamanaka K, et al. Antisense oligonucleotide therapy for neurodegenerative disease[J]. Journal of Clinical Investiga-tion, 2006, 116(8):2290229-6.
[17] Miller T M, Pestronk A, David W, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis:A phase 1, randomised, first-in-man study[J]. Lancet Neurology, 2013, 12(5):435-442.
[18] Olney N T, Spina S, Miller B L. Frontotemporal Dementia[J]. Neurolog-ic Clinics, 2017, 35(2):339-374.
[19] Irwin D J, Cairns N J, Grossman M, et al. Frontotemporal lobar degen-eration:defining phenotypic diversity through personalized medicine[J]. Acta Neuropathologica, 2015, 129(4):469-491.
[20] Gligorijevic V, Malod-Dognin N, Przulj N. Integrative methods for ana-lyzing big data in precision medicine[J]. Proteomics, 2016, 16(5):741-758.
[21] Area-Gomez E, Schon E A. Mitochondrial genetics and disease[J]. Journal of Child Neurology, 2014, 29(9):1208-1215.
[22] Lightowlers R N, Taylor R W, Turnbull D M. Mutations causing mito-chondrial disease:What is new and what challenges remain?[J]. Sci-ence, 2015, 349(6255):1494-1499.
[23] 袁云. 重视线粒体病的诊断和治疗[J]. 中华神经科杂志, 2015, 48(12):1043-1044. Yuan Yun. Pay attention to the diagnosis and treatment of mitochon-drial diseases[J]. Chinese Journal of Neurology, 2015, 48(12):1043-1044.
[24] Ma Y, Fang F, Yang Y, et al. The study of mitochondrial A3243G mu-tation in different samples[J]. Mitochondrion, 2009, 9(2):139-143.
[25] Mitsumoto H, Brooks B R, Silani V. Clinical trials in amyotrophic lat-eral sclerosis:Why so many negative trials and how can trials be im-proved?[J]. Lancet Neurology, 2014, 13(11):1127-1238.
[26] 陈生弟, 周海燕. 浅谈帕金森病的精准医疗[J]. 中华神经科杂志Chinese Journal of Neurology, 2017, 50(1):3-5. Chen Shengdi, Zhou Haiyan. Precise medical on Parkinson disease[J]. Chinese Journal of Neurology, 2017, 50(1):3-5.
[27] Braak H, Ghebremedhin E, Rub U, et al. Stages in the development of Parkinson's disease-related pathology[J]. Cell and Tissue Research, 2004, 318(1):121-134.
[28] Cloutier F, Marrero A, O'connell C, et al. MicroRNAs as potential cir-culating biomarkers for amyotrophic lateral sclerosis[J]. Journal of Mo-lecular Neuroscience, 2015, 56(1):102-112.
[29] Malek N, Swallow D, Grosset K A, et al. Alpha-synuclein in peripher-al tissues and body fluids as a biomarker for Parkinson's disease:A systematic review[J]. Acta Neurologica Scandinavica, 2014, 130(2):59-72.
[30] Lolekha P, Wongwan P, Kulkantrakorn K. Association between serum uric acid and motor subtypes of Parkinson's disease[J]. Journa of Clini-cal Neuroscience, 2015, 22(8):1264-1267.
[31] Bushart D D, Murphy G G, Shakkottai V G. Precision medicine in spi-nocerebellar ataxias:treatment based on common mechanisms of dis-ease[J]. Annals of Translational Medicine, 2016, 4(2):25.
[32] Ogawa K, Seki T, Onji T, et al. Mutant gammaPKC that causes spino-cerebellar ataxia type 14 upregulates Hsp70, which protects cells from the mutant's cytotoxicity[J]. Biochemical and Biophysical Research Communications, 2013, 440(1):25-30.
[33] Shakkottai V G, Do Carmo Costa M, Dell'orco J M, et al. Early chang-es in cerebellar physiology accompany motor dysfunction in the poly-glutamine disease spinocerebellar ataxia type 3[J]. Journal of Neurosci-ence, 2011, 31(36):13002-13014.
[34] Gao Z, Todorov B, Barrett C F, et al. Cerebellar ataxia by enhanced Ca (V)2.1 currents is alleviated by Ca2+-dependent K+-channel activators in Cacna1a(S218L) mutant mice[J]. Journal of Neuroscience, 2012, 32(44):15533-15546.
[35] Zhang F, Li M, Wang J, et al. Finding new tricks for old drugs:Tumor-icidal activity of non-traditional antitumor drugs[J]. AAPS PharmSci-Tech, 2016, 17(3):539-552.
[36] Miller R G, Mitchell J D, Moore D H. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND)[J]. The Cochrane Data-base of Systematic Reviews, 2012(3):Cd001447.
[37] FDA. FDA approves drug to treat ALS[EB/OL].[2017-05-31]. https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm557102.htm.
[38] Van Den Elzen M, Go M F, Knulst A C, et al. Efficacy of treatment of non-hereditary angioedema[J]. Clinical Reviews in Allergy and Immu-nology, 2016, doi:10.1007/s12016-016-8585-0.
[39] Chambliss A B, Chan D W. Precision medicine:from pharmacogenom-ics to pharmacoproteomics[J]. Clinical Proteomics, 2016, 13(1):25.
[40] Payami H, Factor S A. Promise of pharmacogenomics for drug discov-ery, treatment and prevention of Parkinson's disease. A perspective[J]. Neurotherapeutics, 2014, 11(1):111-116.
[41] Kho A N, Hayes M G, Rasmussen-Torvik L, et al. Use of diverse elec-tronic medical record systems to identify genetic risk for type 2 diabe-tes within a genome-wide association study[J]. Journal American Medi-cal Informatics Associations, 2012, 19(2):212-218.
[42] Cooper-Dehoff R M, Johnson J A. Hypertension pharmacogenomics:In search of personalized treatment approaches[J]. Nature Reviews Ne-phrology, 2016, 12(2):110-122.
[43] Davis M F, Haines J L. The intelligent use and clinical benefits of electronic medical records in multiple sclerosis[J]. Expert Reviews of Clinical Immunology, 2015, 11(2):205-211.
[44] Kalia L V, Lang A E. Parkinson's disease[J]. The Lancet, 386(9996):896-912.
[45] Bertucci Filho D, Teive H A, Werneck L C. Early-onset Parkinson's disease and depression[J]. Arquivos de Neuropsiquiatria, 2007, 65(1):5-10.
[46] Ylikotila P, Tiirikka T, Moilanen J S, et al. Epidemiology of early-on-set Parkinson's disease in Finland[J]. Parkinsonism and Relat Disor-ders, 2015, 21(8):938-942.
[47] Masellis M, Collinson S, Freeman N, et al. Dopamine D2 receptor gene variants and response to rasagiline in early Parkinson's disease:A pharmacogenetic study[J]. Brain, 2016, 139(Pt 7):2050-2062.
[48] Sugarman E A, Nagan N, Zhu H, et al. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy:Clinical laboratory analysis of >72400 specimens[J]. European Journal of Human Genet-ics, 2012, 20(1):27-32.
[49] Kolb S J, Kissel J T. Spinal Muscular Atrophy[J]. Neurologic Clinics, 2015, 33(4):831-846.
[50] Lefebvre S, Burglen L, Reboullet S, et al. Identification and character-ization of a spinal muscular atrophy-determining gene[J]. Cell, 1995, 80(1):155-165.
[51] Hua Y, Vickers T A, Okunola H L, et al. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice[J]. American Journal of Human Genetics, 2008, 82(4):834-848.
[52] Ottesen E W. ISS-N1 makes the First FDA-approved Drug for Spinal Muscular Atrophy[J]. Translational Neuroscience, 2017, 8:1-6.
[53] Flanigan K M. Duchenne and Becker muscular dystrophies[J]. Neuro-logic Clinics, 2014, 32(3):671-688.
[54] Mendell J R, Shilling C, Leslie N D, et al. Evidence-based path to newborn screening for Duchenne muscular dystrophy[J]. Annals of Neurology, 2012, 71(3):304-313.
[55] Aartsma-Rus A, Ginjaar I B, Bushby K. The importance of genetic di-agnosis for Duchenne muscular dystrophy[J]. Journals of Medical Ge-netics, 2016, 53(3):145-151.
[56] Ousterout D G, Kabadi A M, Thakore P I, et al. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy[J]. Nature Communications, 2015, 6:6244.
[57] Domanskyi A, Saarma M, Airavaara M. Prospects of Neurotrophic Fac-tors for Parkinson's Disease:Comparison of Protein and Gene Therapy[J]. Human Gene Therapy, 2015, 26(8):55055-9.
[58] Ramaswamy S, Kordower J H. Gene therapy for Huntington's disease[J]. Neurobiology of Disease, 2012, 48(2):2432-54.
[59] Alcalay R N, Caccappolo E, Mejia-Santana H, et al. Frequency of known mutations in early onset PD; implication for genetic counsel-ing:the CORE-PD study[J]. Archives of Neurology, 2010, 67(9):1116-1122.
[60] Carew J D, Nair G, Andersen P M, et al. Presymptomatic spinal cord neurometabolic findings in SOD1-positive people at risk for familial ALS[J]. Neurology, 2011, 77(14):1370-1375.
[61] Vucic S, Nicholson G A, Kiernan M C. Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis[J]. Brain, 2008, 131(Pt 6):1540-1550.
[62] Avidan N, Le Panse R, Berrih-Aknin S, et al. Genetic basis of myas-thenia gravis-a comprehensive review[J]. Journal of Autoimmunity, 2014, 52:146-153.
[63] Mayer G, Jones A R, Binz P A, et al. Controlled vocabularies and on-tologies in proteomics:overview, principles and practice[J]. Biochimi-ca et Biophysica Acta, 2014, 1844(1 Pt A):98-107.
[64] Scheperjans F, Aho V, Pereira P A, et al. Gut microbiota are related to Parkinson's disease and clinical phenotype[J]. Movement Disorders, 2015, 30(3):350-358.
[65] Keshavarzian A, Green S J, Engen P A, et al. Colonic bacterial compo-sition in Parkinson's disease[J]. Movement Disorders, 2015, 30(10):1351-1360.
[66] Dobbs S M, Dobbs R J, Weller C, et al. Peripheral aetiopathogenic drivers and mediators of Parkinson's disease and co-morbidities:role of gastrointestinal microbiota[J]. Journal of Neurovirology, 2016, 22(1):22-32.