Special lssues

Precision medicine in dealing with rare neurologic diseases:Current status and future prospects

  • LIU Shuang ,
  • FENG Shi ,
  • XU Ping ,
  • GONG Mengchun ,
  • PENG Bin
Expand
  • 1. Central Laboratories, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China;
    2. Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China

Received date: 2017-06-20

  Revised date: 2017-07-31

  Online published: 2017-08-26

Abstract

For rare neurologic diseases, a clear etiology is often not available, and one sees a progressive course of the diseases with a diversity in phenotypes, which poses great challenges for the diagnosis and the treatment. Recent years have witnessed a growing role of the precision medicine in dealing with rare neurologic diseases. The precision medicine has shown a great promise in exploring the pathogenesis, refining the diagnosis, improving the treatment and assessing the onset risk. In addition, the precision medicine can serve as the link between the basic medicine and the clinical practice, which provides an innovative model of the disease diagnosis and treatment. Despite difficulties in the resource integration and the omics data integration, the rapid progress of the bioinformatics and the information technology makes more promising the prospect of the precision medicine in dealing with rare neurologic diseases. The precision medical research is expected to have a leap forward in the diagnosis and treatment of neurologic diseases.

Cite this article

LIU Shuang , FENG Shi , XU Ping , GONG Mengchun , PENG Bin . Precision medicine in dealing with rare neurologic diseases:Current status and future prospects[J]. Science & Technology Review, 2017 , 35(16) : 37 -42 . DOI: 10.3981/j.issn.1000-7857.2017.16.005

References

[1] Collins F S, Varmus H. A new initiative on precision medicine[J]. New England Journal of Medicine, 2015, 372(9):793-795.
[2] De Vrueh R Be D H J. Priority medicines for Europe and the world:A public health approach to innovation[R]. WHO, 2013.
[3] Tambuyzer E. Rare diseases, orphan drugs and their regulation:Ques-tions and misconceptions[J]. Nature Reviews Drug Discovery, 2010, 9(12):921-929.
[4] Taylor J P, Brown R H, Jr Cleveland D W. Decoding ALS:From genes to mechanism[J]. Nature, 2016, 539(7628):197-206.
[5] Zoccolella S, Beghi E, Palagano G, et al. Predictors of long survival in amyotrophic lateral sclerosis:a population-based study[J]. Journal of the Neurological Science, 2008, 268(1-2):28-32.
[6] Creemers H, Grupstra H, Nollet F, et al. Prognostic factors for the course of functional status of patients with ALS:A systematic review[J]. Journal of Neurology, 2015, 262(6):1407-1423.
[7] Al-Chalabi A, Van Den Berg L H, Veldink J. Gene discovery in amyo-trophic lateral sclerosis:Implications for clinical management[J]. Na-ture Reviews Neurology, 2017, 13(2):96-104.
[8] Kaur S J, Mckeown S R, Rashid S. Mutant SOD1 mediated pathogene-sis of Amyotrophic Lateral Sclerosis[J]. Gene, 2016, 577(2):109-118.
[9] Deng H X, Chen W, Hong S T, et al. Mutations in UBQLN2 cause dom-inant X-linked juvenile and adult-onset ALS and ALS/dementia[J]. Na-ture, 2011, 477(7363):211-215.
[10] Fecto F, Yan J, Vemula S P, et al. SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis[J]. Archives of Neurology, 2011, 68(11):1440-1446.
[11] Wong Y C, Holzbaur E L. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupt-ed by an ALS-linked mutation[J]. Proceedings of National Academy of Sciences of the U S A, 2014, 111(42):E4439-E4448.
[12] Chen H J, Anagnostou G, Chai A, et al. Characterization of the proper-ties of a novel mutation in VAPB in familial amyotrophic lateral scle-rosis[J]. Journal of Biological Chemistry, 2010, 285(51):40266-40281.
[13] Kabashi E, Valdmanis P N, Dion P, et al. TARDBP mutations in indi-viduals with sporadic and familial amyotrophic lateral sclerosis[J]. Na-ture Genetics, 2008, 40(5):572-574.
[14] Kwiatkowski T J, Jr., Bosco D A, Leclerc A L, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis[J]. Science, 2009, 323(5918):1205-1208.
[15] Renton A E, Majounie E, Waite A, et al. A hexanucleotide repeat ex-pansion in C9ORF72 is the cause of chromosome 9p21-linked ALSFTD[J]. Neuron, 2011, 72(2):257-268.
[16] Smith R A, Miller T M, Yamanaka K, et al. Antisense oligonucleotide therapy for neurodegenerative disease[J]. Journal of Clinical Investiga-tion, 2006, 116(8):2290229-6.
[17] Miller T M, Pestronk A, David W, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis:A phase 1, randomised, first-in-man study[J]. Lancet Neurology, 2013, 12(5):435-442.
[18] Olney N T, Spina S, Miller B L. Frontotemporal Dementia[J]. Neurolog-ic Clinics, 2017, 35(2):339-374.
[19] Irwin D J, Cairns N J, Grossman M, et al. Frontotemporal lobar degen-eration:defining phenotypic diversity through personalized medicine[J]. Acta Neuropathologica, 2015, 129(4):469-491.
[20] Gligorijevic V, Malod-Dognin N, Przulj N. Integrative methods for ana-lyzing big data in precision medicine[J]. Proteomics, 2016, 16(5):741-758.
[21] Area-Gomez E, Schon E A. Mitochondrial genetics and disease[J]. Journal of Child Neurology, 2014, 29(9):1208-1215.
[22] Lightowlers R N, Taylor R W, Turnbull D M. Mutations causing mito-chondrial disease:What is new and what challenges remain?[J]. Sci-ence, 2015, 349(6255):1494-1499.
[23] 袁云. 重视线粒体病的诊断和治疗[J]. 中华神经科杂志, 2015, 48(12):1043-1044. Yuan Yun. Pay attention to the diagnosis and treatment of mitochon-drial diseases[J]. Chinese Journal of Neurology, 2015, 48(12):1043-1044.
[24] Ma Y, Fang F, Yang Y, et al. The study of mitochondrial A3243G mu-tation in different samples[J]. Mitochondrion, 2009, 9(2):139-143.
[25] Mitsumoto H, Brooks B R, Silani V. Clinical trials in amyotrophic lat-eral sclerosis:Why so many negative trials and how can trials be im-proved?[J]. Lancet Neurology, 2014, 13(11):1127-1238.
[26] 陈生弟, 周海燕. 浅谈帕金森病的精准医疗[J]. 中华神经科杂志Chinese Journal of Neurology, 2017, 50(1):3-5. Chen Shengdi, Zhou Haiyan. Precise medical on Parkinson disease[J]. Chinese Journal of Neurology, 2017, 50(1):3-5.
[27] Braak H, Ghebremedhin E, Rub U, et al. Stages in the development of Parkinson's disease-related pathology[J]. Cell and Tissue Research, 2004, 318(1):121-134.
[28] Cloutier F, Marrero A, O'connell C, et al. MicroRNAs as potential cir-culating biomarkers for amyotrophic lateral sclerosis[J]. Journal of Mo-lecular Neuroscience, 2015, 56(1):102-112.
[29] Malek N, Swallow D, Grosset K A, et al. Alpha-synuclein in peripher-al tissues and body fluids as a biomarker for Parkinson's disease:A systematic review[J]. Acta Neurologica Scandinavica, 2014, 130(2):59-72.
[30] Lolekha P, Wongwan P, Kulkantrakorn K. Association between serum uric acid and motor subtypes of Parkinson's disease[J]. Journa of Clini-cal Neuroscience, 2015, 22(8):1264-1267.
[31] Bushart D D, Murphy G G, Shakkottai V G. Precision medicine in spi-nocerebellar ataxias:treatment based on common mechanisms of dis-ease[J]. Annals of Translational Medicine, 2016, 4(2):25.
[32] Ogawa K, Seki T, Onji T, et al. Mutant gammaPKC that causes spino-cerebellar ataxia type 14 upregulates Hsp70, which protects cells from the mutant's cytotoxicity[J]. Biochemical and Biophysical Research Communications, 2013, 440(1):25-30.
[33] Shakkottai V G, Do Carmo Costa M, Dell'orco J M, et al. Early chang-es in cerebellar physiology accompany motor dysfunction in the poly-glutamine disease spinocerebellar ataxia type 3[J]. Journal of Neurosci-ence, 2011, 31(36):13002-13014.
[34] Gao Z, Todorov B, Barrett C F, et al. Cerebellar ataxia by enhanced Ca (V)2.1 currents is alleviated by Ca2+-dependent K+-channel activators in Cacna1a(S218L) mutant mice[J]. Journal of Neuroscience, 2012, 32(44):15533-15546.
[35] Zhang F, Li M, Wang J, et al. Finding new tricks for old drugs:Tumor-icidal activity of non-traditional antitumor drugs[J]. AAPS PharmSci-Tech, 2016, 17(3):539-552.
[36] Miller R G, Mitchell J D, Moore D H. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND)[J]. The Cochrane Data-base of Systematic Reviews, 2012(3):Cd001447.
[37] FDA. FDA approves drug to treat ALS[EB/OL].[2017-05-31]. https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm557102.htm.
[38] Van Den Elzen M, Go M F, Knulst A C, et al. Efficacy of treatment of non-hereditary angioedema[J]. Clinical Reviews in Allergy and Immu-nology, 2016, doi:10.1007/s12016-016-8585-0.
[39] Chambliss A B, Chan D W. Precision medicine:from pharmacogenom-ics to pharmacoproteomics[J]. Clinical Proteomics, 2016, 13(1):25.
[40] Payami H, Factor S A. Promise of pharmacogenomics for drug discov-ery, treatment and prevention of Parkinson's disease. A perspective[J]. Neurotherapeutics, 2014, 11(1):111-116.
[41] Kho A N, Hayes M G, Rasmussen-Torvik L, et al. Use of diverse elec-tronic medical record systems to identify genetic risk for type 2 diabe-tes within a genome-wide association study[J]. Journal American Medi-cal Informatics Associations, 2012, 19(2):212-218.
[42] Cooper-Dehoff R M, Johnson J A. Hypertension pharmacogenomics:In search of personalized treatment approaches[J]. Nature Reviews Ne-phrology, 2016, 12(2):110-122.
[43] Davis M F, Haines J L. The intelligent use and clinical benefits of electronic medical records in multiple sclerosis[J]. Expert Reviews of Clinical Immunology, 2015, 11(2):205-211.
[44] Kalia L V, Lang A E. Parkinson's disease[J]. The Lancet, 386(9996):896-912.
[45] Bertucci Filho D, Teive H A, Werneck L C. Early-onset Parkinson's disease and depression[J]. Arquivos de Neuropsiquiatria, 2007, 65(1):5-10.
[46] Ylikotila P, Tiirikka T, Moilanen J S, et al. Epidemiology of early-on-set Parkinson's disease in Finland[J]. Parkinsonism and Relat Disor-ders, 2015, 21(8):938-942.
[47] Masellis M, Collinson S, Freeman N, et al. Dopamine D2 receptor gene variants and response to rasagiline in early Parkinson's disease:A pharmacogenetic study[J]. Brain, 2016, 139(Pt 7):2050-2062.
[48] Sugarman E A, Nagan N, Zhu H, et al. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy:Clinical laboratory analysis of >72400 specimens[J]. European Journal of Human Genet-ics, 2012, 20(1):27-32.
[49] Kolb S J, Kissel J T. Spinal Muscular Atrophy[J]. Neurologic Clinics, 2015, 33(4):831-846.
[50] Lefebvre S, Burglen L, Reboullet S, et al. Identification and character-ization of a spinal muscular atrophy-determining gene[J]. Cell, 1995, 80(1):155-165.
[51] Hua Y, Vickers T A, Okunola H L, et al. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice[J]. American Journal of Human Genetics, 2008, 82(4):834-848.
[52] Ottesen E W. ISS-N1 makes the First FDA-approved Drug for Spinal Muscular Atrophy[J]. Translational Neuroscience, 2017, 8:1-6.
[53] Flanigan K M. Duchenne and Becker muscular dystrophies[J]. Neuro-logic Clinics, 2014, 32(3):671-688.
[54] Mendell J R, Shilling C, Leslie N D, et al. Evidence-based path to newborn screening for Duchenne muscular dystrophy[J]. Annals of Neurology, 2012, 71(3):304-313.
[55] Aartsma-Rus A, Ginjaar I B, Bushby K. The importance of genetic di-agnosis for Duchenne muscular dystrophy[J]. Journals of Medical Ge-netics, 2016, 53(3):145-151.
[56] Ousterout D G, Kabadi A M, Thakore P I, et al. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy[J]. Nature Communications, 2015, 6:6244.
[57] Domanskyi A, Saarma M, Airavaara M. Prospects of Neurotrophic Fac-tors for Parkinson's Disease:Comparison of Protein and Gene Therapy[J]. Human Gene Therapy, 2015, 26(8):55055-9.
[58] Ramaswamy S, Kordower J H. Gene therapy for Huntington's disease[J]. Neurobiology of Disease, 2012, 48(2):2432-54.
[59] Alcalay R N, Caccappolo E, Mejia-Santana H, et al. Frequency of known mutations in early onset PD; implication for genetic counsel-ing:the CORE-PD study[J]. Archives of Neurology, 2010, 67(9):1116-1122.
[60] Carew J D, Nair G, Andersen P M, et al. Presymptomatic spinal cord neurometabolic findings in SOD1-positive people at risk for familial ALS[J]. Neurology, 2011, 77(14):1370-1375.
[61] Vucic S, Nicholson G A, Kiernan M C. Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis[J]. Brain, 2008, 131(Pt 6):1540-1550.
[62] Avidan N, Le Panse R, Berrih-Aknin S, et al. Genetic basis of myas-thenia gravis-a comprehensive review[J]. Journal of Autoimmunity, 2014, 52:146-153.
[63] Mayer G, Jones A R, Binz P A, et al. Controlled vocabularies and on-tologies in proteomics:overview, principles and practice[J]. Biochimi-ca et Biophysica Acta, 2014, 1844(1 Pt A):98-107.
[64] Scheperjans F, Aho V, Pereira P A, et al. Gut microbiota are related to Parkinson's disease and clinical phenotype[J]. Movement Disorders, 2015, 30(3):350-358.
[65] Keshavarzian A, Green S J, Engen P A, et al. Colonic bacterial compo-sition in Parkinson's disease[J]. Movement Disorders, 2015, 30(10):1351-1360.
[66] Dobbs S M, Dobbs R J, Weller C, et al. Peripheral aetiopathogenic drivers and mediators of Parkinson's disease and co-morbidities:role of gastrointestinal microbiota[J]. Journal of Neurovirology, 2016, 22(1):22-32.
Outlines

/