Special lssues

Advances in precision neurosurgery

  • KONG Ziren ,
  • ZHANG Xiao ,
  • FENG Shi ,
  • GONG Mengchun ,
  • WANG Yu ,
  • MA Wenbin ,
  • WANG Renzhi
  • 1. Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China;
    2. Central Laboratories, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China

Received date: 2017-06-22

  Revised date: 2017-08-01

  Online published: 2017-08-26


According to the National Institutes of Health(NIH), the precision medicine is defined as an emerging approach for disease treatment and prevention, with considerations of the variance in genes, environment, and lifestyle for an individual patient. In recent years, new developments in the basic researches, the neuroimaging, the surgery, the neurologic disorders, especially, the neuro-oncology studies, have shed light on the future of the neurosurgery. With the continuous progress of the cancer genomics, the targeted therapy, the stereotactic radiosurgery and the proton therapy, the tumors can be treated precisely, while an increasing number of therapeutic methods can also be found for the non-neoplastic neurologic disorders. This paper reviews the latest techniques and advances of the anatomical structure, the functional localization, the surgery, the diagnosis and treatment of the neoplastic and non-neoplastic disorders of the brain, demonstrating that the neurosurgery has entered a precision era.

Cite this article

KONG Ziren , ZHANG Xiao , FENG Shi , GONG Mengchun , WANG Yu , MA Wenbin , WANG Renzhi . Advances in precision neurosurgery[J]. Science & Technology Review, 2017 , 35(16) : 43 -51 . DOI: 10.3981/j.issn.1000-7857.2017.16.006


[1] Collins F S, Varmus H. A new initiative on precision medicine[J]. New England Journal of Medicine, 2015, 372(9):793-795.
[2] Runge V M, Aoki S, Bradley W G, et al. Magnetic resonance imaging and computed tomography of the brain-50 years of innovation, with a focus on the future[J]. Investigative Radiology, 2015, 50(9):551-556.
[3] Tidwell A S, Robertson I D. Magnetic resonance imaging of normal and abnormal brain perfusion[J]. Veterinary Radiology & Ultrasound, 2011, 52(Suppl 1):S62-71.
[4] Kubota Y. New developments in electron microscopy for serial image ac-quisition of neuronal profiles[J]. Microscopy (Oxf), 2015, 64(1):27-36.
[5] Ohno N, Katoh M, Saitoh Y, et al. Three-dimensional volume imaging with electron microscopy toward connectome[J]. Microscopy (Oxf), 2015, 64(1):17-26.
[6] Fakhry A, Zeng T, Ji S. Residual deconvolutional networks for brain electron microscopy image segmentation[J]. IEEE Transactions on Medi-cal Imaging, 2017, 36(2):447-456.
[7] Zeng T, Wu B, Ji S. DeepEM3D:Approaching human-level perfor-mance on 3D anisotropic EM image segmentation[J]. Bioinformatics, 2017, doi:btx188.
[8] Weissleder R. Molecular imaging in cancer[J]. Science, 2006, 312(5777):1168-1171.
[9] Fan L, Li H, Zhuo J, et al. The human brainnetome atlas:a new brain atlas based on connectional architecture[J]. Cerebral Cortex, 2016, 26(8):3508-3526.
[10] The Chinese Academy of Sciences. Brainnetome atlas[EB/OL].[2017-06-17]. http://atlas.brainnetome.org/.In.
[11] Van Essen D C, Smith S M, Barch D M, et al. The WU-Minn human connectome project:An overview[J]. Neuroimage, 2013, 80:62-79.
[12] Insel T R, Landis S C, Collins F S. Research priorities. The NIH BRAIN initiative[J]. Science, 2013, 340(6133):687-688.
[13] Kelloff G J, Hoffman J M, Johnson B, et al. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development[J]. Clinical Cancer Research, 2005, 11(8):2785-2808.
[14] Shivamurthy V K, Tahari A K, Marcus C, et al. Brain FDG PET and the diagnosis of dementia[J]. American Journal of Roentgenology, 2015, 204(1):W76-W85.
[15] Bloudek L M, Spackman D E, Blankenburg M, et al. Review and me-ta-analysis of biomarkers and diagnostic imaging in Alzheimer's dis-ease[J]. Journal of Alzheimers Disease, 2011, 26(4):627-645.
[16] Ewers M, Brendel M, Rizk-Jackson A, et al. Reduced FDG-PET brain metabolism and executive function predict clinical progression in elderly healthy subjects[J]. NeuroImage:Clinical, 2014, 4:45-52.
[17] Warburg O. On the origin of cancer cells[J]. Science, 1956, 123(3191):309-314.
[18] Omuro A M, Leite C C, Mokhtari K, et al. Pitfalls in the diagnosis of brain tumours[J]. The Lancet Neurology, 2006, 5(11):937-948.
[19] Yoon J H, Kim J H, Kang W J, et al. Grading of cerebral glioma with multiparametric MR imaging and 18F-FDG-PET:Concordance and accuracy[J]. European Radiology, 2014, 24(2):380-389.
[20] Zukotynski K A, Fahey F H, Vajapeyam S, et al. Exploratory evalua-tion of MR permeability with 18F-FDG PET mapping in pediatric brain tumors:A report from the Pediatric Brain Tumor Consortium[J]. Journal of Nuclear Medicine, 2013, 54(8):1237-1243.
[21] Li S, An L, Yu S, et al. (13)C MRS of human brain at 7 Tesla using[2-(13)C]glucose infusion and low power broadband stochastic proton decoupling[J]. Magnetic Resonance in Medicine, 2016, 75(3):954-961.
[22] Koglin N, Mueller A, Berndt M, et al. Specific PET imaging of xCtransporter activity using a (1) (8)F-labeled glutamate derivative re-veals a dominant pathway in tumor metabolism[J]. Clinical Cancer Re-search, 2011, 17(18):6000-6011.
[23] Takeuchi S, Wada K, Toyooka T, et al. Increased xCT expression cor-relates with tumor invasion and outcome in patients with glioblastomas[J]. Neurosurgery, 2013, 72(1):33-41.
[24] Venneti S, Dunphy MP, Zhang H, et al. Glutamine-based PET imag-ing facilitates enhanced metabolic evaluation of gliomas in vivo[J]. Sci-ence Translational Medicine, 2015, 7(274):274ra217.
[25] Glaudemans A W, Enting R H, Heesters M A, et al. Value of 11C-me-thionine PET in imaging brain tumours and metastases[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2013, 40(4):615-635.
[26] Koulouri O, Steuwe A, Gillett D, et al. A role for 11C-methionine PET imaging in ACTH-dependent Cushing's syndrome[J]. European Journal of Endocrinology, 2015, 173(4):M107-M120.
[27] Juhasz C, Dwivedi S, Kamson D O, et al. Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors[J]. Molecular Imaging, 2014, 13(6):7290.2014.00015.
[28] Ishiwata K, Kubota K, Murakami M, et al. Re-evaluation of amino ac-id PET studies:can the protein synthesis rates in brain and tumor tis-sues be measured in vivo?[J]. Journal of Nuclear Medicine, 1993, 34(11):1936-1943.
[29] Davitz M S, Wu W E, Soher B J, et al. Quantifying global-brain me-tabolite level changes with whole-head proton MR spectroscopy at 3T[J]. Magnetic Resonance Imaging, 2017, 35:15-19.
[30] Bandettini PA. Twenty years of functional MRI:The science and the stories[J]. Neuroimage, 2012, 62(2):575-588.
[31] Mahvash M, Maslehaty H, Jansen O, et al. Functional magnetic reso-nance imaging of motor and language for preoperative planning of neu-rosurgical procedures adjacent to functional areas[J]. Clinical Neurolo-gy and Neurosurgery, 2014, 123:72-77.
[32] Chakraborty A, McEvoy A W. Presurgical functional mapping with functional MRI[J]. Current Opinion in Neurology, 2008, 21(4):446-451.
[33] Lang S, Duncan N, Northoff G. Resting-state functional magnetic reso-nance imaging:review of neurosurgical applications[J]. Neurosurgery, 2014, 74(5):453-464.
[34] Jones D K, Leemans A. Diffusion tensor imaging[J]. Methods in Molec-ular Biology, 2011, 711:127-144.
[35] Tatsuzawa K, Owada K, Sasajima H, et al. Surgical strategy of brain tumors adjacent to the optic radiation using diffusion tensor imagingbased tractography[J]. Oncology Letters, 2010, 1(6):1005-1009.
[36] Pujol S, Wells W, Pierpaoli C, et al. The DTI challenge:Toward stan-dardized evaluation of diffusion tensor imaging tractography for neuro-surgery[J]. Journal of Neuroimaging, 2015, 25(6):875-882.
[37] Hendrix P, Griessenauer C J, Cohen-Adad J, et al. Spinal diffusion tensor imaging:A comprehensive review with emphasis on spinal cord anatomy and clinical applications[J]. Clinical Anatomy, 2015, 28(1):88-95.
[38] Lerner A, Mogensen M A, Kim P E, et al. Clinical applications of dif-fusion tensor imaging[J]. World Neurosurgery, 2014, 82(1/2):96-109.
[39] Mezger U, Jendrewski C, Bartels M. Navigation in surgery[J]. Langen-beck's Archives of Surgery, 2013, 398(4):501-514.
[40] Zhang J, Chen X, Zhao Y, et al. Impact of intraoperative magnetic res-onance imaging and functional neuronavigation on surgical outcome in patients with gliomas involving language areas[J]. Neurosurgical Re-view, 2015, 38(2):319-330.
[41] Bir S C, Konar S K, Maiti T K, et al. Utility of neuronavigation in in-tracranial meningioma resection:A single-center retrospective study[J]. World Neurosurgery, 2016, 90:546-555.
[42] Stachura K, Grzywna E. Neuronavigation-guided endoscopy for intra-ventricular tumors in adult patients without hydrocephalus[J]. Video-surgery and Other Miniinvasive Techniques, 2016, 11(3):200-207.
[43] Gerard I J, Kersten-Oertel M, Petrecca K, et al. Brain shift in neuro-navigation of brain tumors:A review[J]. Medical Image Analysis, 2017, 35:403-420.
[44] Riva M, Hennersperger C, Milletari F, et al. 3D intra-operative ultra-sound and MR image guidance:Pursuing an ultrasound-based man-agement of brainshift to enhance neuronavigation[J]. International Jour-nal of Computer Assisted Radiology and Surgery, 2017, doi:10.1007/s11548-017-1578-5.
[45] Lobo F A, Wagemakers M, Absalom A R. Anaesthesia for awake crani-otomy[J]. British Journal of Anaesthesia, 2016, 116(6):740-744.
[46] Stevanovic A, Rossaint R, Veldeman M, et al. Anaesthesia manage-ment for awake craniotomy:Systematic review and Meta-analysis[J]. PLoS One, 2016, 11(5):e0156448.
[47] Eseonu C I, Rincon-Torroella J, ReFaey K, et al. Awake craniotomy vs craniotomy under general anesthesia for perirolandic gliomas:Eval-uating perioperative complications and extent of resection[J]. Neurosur-gery, 2017, doi:nyx023.
[48] Smith J A, Jivraj J, Wong R, et al. 30 years of neurosurgical robots:Review and trends for manipulators and associated navigational sys-tems[J]. Annals of Biomedical Engineering, 2016, 44(4):836-846.
[49] Doulgeris J J, Gonzalez-Blohm S A, Filis A K, et al. Robotics in neu-rosurgery:Evolution, current challenges, and compromises[J]. Cancer Control, 2015, 22(3):352-359.
[50] Li Q H, Zamorano L, Pandya A, et al. The application accuracy of the NeuroMate robot-A quantitative comparison with frameless and frame-based surgical localization systems[J]. Computer Aided Surgery, 2002, 7(2):90-98.
[51] Sutherland G R, Lama S, Gan L S, et al. Merging machines with mi-crosurgery:Cclinical experience with neuroArm[J]. Journal of Neuro-surgery, 2013, 118(3):521-529.
[52] Devito D P, Kaplan L, Dietl R, et al. Clinical acceptance and accura-cy assessment of spinal implants guided with SpineAssist surgical ro-bot:retrospective study[J]. Spine, 2010, 35(24):2109-2115.
[53] Carai A, Mastronuzzi A, De Benedictis A, et al. Robot-assisted stereo-tactic biopsy of diffuse intrinsic pontine glioma:A single centre experi-ence[J]. World Neurosurgery, 2017, 101:584-588.
[54] Wang W, Lv Z, Li X, et al. Virtual reality based GIS analysis platform[C]//International Conference on Neural Information Processing. Cham:Springer International Publishing, 2015:638-645.
[55] Choudhury N, Gelinas-Phaneuf N, Delorme S, et al. Fundamentals of neurosurgery:Virtual reality tasks for training and evaluation of techni-cal skills[J]. World Neurosurgery, 2013, 80(5):e9-e19.
[56] Wang S, Ying J, Wei L, et al. Effects of parasagittal meningiomas on intracranial venous circulation assessed by the virtual reality technolo-gy[J]. International Journal of Clinical and Experimental Medicine, 2015, 8(8):12706-12715.
[57] Alaraj A, Luciano C J, Bailey D P, et al. Virtual reality cerebral aneu-rysm clipping simulation with real-time haptic feedback[J]. Neurosur-gery, 2015, 11(Suppl 2):52-58.
[58] Billinghurst M, Clark A, Lee G. A survey of augmented reality[J]. Foundations and Trends in Human-Computer Interaction, 2015, 8(2/3):73-272.
[59] Meola A, Cutolo F, Carbone M, et al. Augmented reality in neurosur-gery:A systematic review[J]. Neurosurgical Review, 2016, doi:10.1007/s10143-016-0732-9.
[60] Besharati Tabrizi L, Mahvash M. Augmented reality-guided neurosur-gery:accuracy and intraoperative application of an image projection technique[J]. Journal of Neurosurgery, 2015, 123(1):206-211.
[61] Kersten-Oertel M, Gerard I, Drouin S, et al. Augmented reality in neu-rovascular surgery:Feasibility and first uses in the operating room[J]. International Journal of Computer Assisted Radiology and Surgery, 2015, 10(11):1823-1836.
[62] Louis D N, Perry A, Reifenberger G, et al. The 2016 world health or-ganization classification of tumors of the central nervous system:A summary[J]. Acta Neuropathologica, 2016, 131(6):803-820.
[63] Yan H, Parsons D W, Jin G, et al. IDH1 and IDH2 mutations in glio-mas[J]. New England Journal of Medicine, 2009, 360(8):765-773.
[64] Eckel-Passow J E, Lachance D H, Molinaro A M, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tu-mors[J]. New England Journal of Medicine, 2015, 372(26):2499-2508.
[65] van den Bent M J, Dubbink H J, Sanson M, et al. MGMT promoter methylation is prognostic but not predictive for outcome to adjuvant PCV chemotherapy in anaplastic oligodendroglial tumors:A report from EORTC Brain Tumor Group Study 26951[J]. Journal of Clinical Oncology, 2009, 27(35):5881-5886.
[66] Stupp R, Hegi M E, Mason W P, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase Ⅲ study:5-year analy-sis of the EORTC-NCIC trial[J]. The Lancet Oncology, 2009, 10(5):459-466.
[67] Cairncross J G, Wang M, Jenkins R B, et al. Benefit from procarba-zine, lomustine, and vincristine in oligodendroglial tumors is associat-ed with mutation of IDH[J]. Journal of Clinical Oncology, 2014, 32(8):783-790.
[68] Westphal M, Heese O, Steinbach J P, et al. A randomised, open label phase Ⅲ trial with nimotuzumab, an anti-epidermal growth factor re-ceptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma[J]. European Journal of Cancer, 2015, 51(4):522-532.
[69] Robinson G W, Orr B A, Gajjar A. Complete clinical regression of a BRAF V600E-mutant pediatric glioblastoma multiforme after BRAF inhibitor therapy[J]. BMC Cancer, 2014, 14:258.
[70] 刘小海, 冯铭, 王任直. 垂体腺瘤分型的历史、现状及展望[J]. 中国神经精神疾病杂志, 2016(9):565-568. Liu Xiaohai, Feng Ming, Wang Renzhi. Past, present, and future of the classification pituitary adenoma[J]. Chinese Journal of Nervous and Mental Diseases, 2016(9):565-568.
[71] Ma Z Y, Song Z J, Chen J H, et al. Recurrent gain-of-function USP8 mutations in Cushing's disease[J]. Cell Research, 2015, 25(3):306-317.
[72] Yao X, Gao H, Li C, et al. Analysis of Ki67, HMGA1, MDM2, and RB expression in nonfunctioning pituitary adenomas[J]. Journal of Neu-ro-Oncology, 2017, 132(2):199-206.
[73] Glebauskiene B, Liutkeviciene R, Vilkeviciute A, et al. Does MMP-9 gene polymorphism play a role in pituitary adenoma development?[J]. Disease Markers, 2017, doi:10.1155/2017/5839528.
[74] Northcott P A, Korshunov A, Witt H, et al. Medulloblastoma compris-es four distinct molecular variants[J]. Journal of Clinical Oncology, 2011, 29(11):1408-1414.
[75] Kool M, Korshunov A, Remke M, et al. Molecular subgroups of medul-loblastoma:An international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas[J]. Acta Neuropathologica, 2012, 123(4):473-484.
[76] Archer T C, Mahoney E L, Pomeroy S L. Medulloblastoma:Molecular classification-based personal therapeutics[J]. Neurotherapeutics, 2017, 14(2):265-273.
[77] Meng J, Agrahari V, Youm I. Advances in targeted drug delivery ap-proaches for the central nervous system tumors:the inspiration of nanobiotechnology[J]. Journal of NeuroImmune Pharmacology, 2017, 12(1):84-98.
[78] Miyake M M, Bleier B S. The blood-brain barrier and nasal drug de-livery to the central nervous system[J]. The American Journal of Rhi-nology & Allergy, 2015, 29(2):124-127.
[79] Fakhoury M. Drug delivery approaches for the treatment of glioblasto-ma multiforme[J]. Artificial Cells Nanomedicine and Biotechnology, 2016, 44(6):1365-1373.
[80] Gilbert M R, Dignam J J, Armstrong T S, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma[J]. New England Jour-nal of Medicine, 2014, 370(8):699-708.
[81] Chinot O L, Wick W, Mason W, et al. Bevacizumab plus radiotherapytemozolomide for newly diagnosed glioblastoma[J]. New England Jour-nal of Medicine, 2014, 370(8):709-722.
[82] Sandmann T, Bourgon R, Garcia J, et al. Patients with proneural glio-blastoma may derive overall survival benefit from the addition of beva-cizumab to first-line radiotherapy and temozolomide:Retrospective analysis of the AVAglio trial[J]. Journal of Clinical Oncology, 2015, 33(25):2735-2744.
[83] Tabouret E, Boudouresque F, Farina P, et al. MMP2 and MMP9 as candidate biomarkers to monitor bevacizumab therapy in high-grade glioma[J]. Neuro-Oncology, 2015, 17(8):1174-1176.
[84] Urup T, Michaelsen S R, Olsen L R, et al. Angiotensinogen and HLA class Ⅱ predict bevacizumab response in recurrent glioblastoma pa-tients[J]. Molecular Oncology, 2016, 10(8):1160-1168.
[85] Bouffet E, Larouche V, Campbell B B, et al. Immune checkpoint inhi-bition for hypermutant glioblastoma multiforme resulting from germ-line biallelic mismatch repair deficiency[J]. Journal of Clinical Oncolo-gy, 2016, 34(19):2206-2211.
[86] Reardon D A, et al. Randomized Phase 3 study evaluating the efficacy and safety of nivolumab vs bevacizumab in patients with recurrent glioblastoma:checkMate 143[EB/OL].[2017-05-25]. http://www.ab-stractsonline.com/pp8/#!/4277/presentation/151.In.
[87] Smith M L, Lee J Y. Stereotactic radiosurgery in the management of brain metastasis[J]. Neurosurgical Focus, 2007, 22(3):E5.
[88] Andrews D W, Scott C B, Sperduto P W, et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases:Phase Ⅲ results of the RTOG 9508 randomised trial[J]. Lancet, 2004, 363(9422):1665-1672.
[89] Aoyama H, Shirato H, Tago M, et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases:a randomized controlled trial[J]. JAMA, 2006, 295(21):2483-2491.
[90] Yamamoto M, Serizawa T, Shuto T, et al. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901):A multi-institu-tional prospective observational study[J]. The Lancet Oncology, 2014, 15(4):387-395.
[91] Lippitz B, Lindquist C, Paddick I, et al. Stereotactic radiosurgery in the treatment of brain metastases:The current evidence[J]. Cancer Treatment Reviews, 2014, 40(1):48-59.
[92] Shimony N, Shofty B, Harosh C B, et al. Surgical resection of cerebral metastases leads to faster resolution of peritumoral edema than stereo-tactic radiosurgery:A volumetric analysis[J]. Annals of Surgical Oncol-ogy, 2017, 24(5):1392-1398.
[93] Kumar R, Laack N, Pollock B E, et al. Stereotactic radiosurgery in the treatment of recurrent CNS lymphoma[J]. World Neurosurgery, 2015, 84(2):390-397.
[94] Cohen-Inbar O, Lee C C, Mousavi SH, et al. Stereotactic radiosurgery for intracranial hemangiopericytomas:A multicenter study[J]. Journal of Neurosurgery, 2017, 126(3):744-754.
[95] McDonald M W, Fitzek M M. Proton therapy[J]. Current Problems in Cancer, 2010, 34(4):257-296.
[96] Chhabra A, Mahajan A. Treatment of common pediatric CNS malignan-cies with proton therapy[J]. Chinese Clinical Oncology, 2016, 5(4):49.
[97] Yock T I, Yeap B Y, Ebb D H, et al. Long-term toxic effects of pro-ton radiotherapy for paediatric medulloblastoma:a phase 2 single-arm study[J]. The Lancet Oncology, 2016, 17(3):287-298.
[98] Combs S E. Does proton therapy have a future in CNS tumors?[J]. Cur-rent Treatment Options in Neurology, 2017, 19(3):12.
[99] Leroy R, Benahmed N, Hulstaert F, et al. Proton therapy in children:A systematic review of clinical effectiveness in 15 pediatric cancers[J]. International Journal of Radiation Oncology Biology Physics, 2016, 95(1):267-278.
[100] Abecassis I J, Xu D S, Batjer H H, et al. Natural history of brain ar-teriovenous malformations:A systematic review[J]. Neurosurgical Fo-cus, 2014, 37(3):E7.
[101] Sahlein D H, Mora P, Becske T, et al. Features predictive of brain ar-teriovenous malformation hemorrhage:Extrapolation to a physiologic model[J]. Stroke, 2014, 45(7):1964-1970.
[102] Ansari S A, Schnell S, Carroll T, et al. Intracranial 4D flow MRI:To-ward individualized assessment of arteriovenous malformation hemo-dynamics and treatment-induced changes[J]. American Journal of Neuroradiology, 2013, 34(10):1922-1928.
[103] Zammar S G, Hamade Y J, Aoun R J, et al. Precision medicine in brain arteriovenous malformation management:Arteries steal the show but veins may hold the crystal ball[J]. Neurosurgery, 2014, 75(6):N13-N14.
[104] Jin P, Wu D, Li X, et al. Towards precision medicine in epilepsy sur-gery[J]. Annals of Translational Medicine, 2016, 4(2):24.
[105] Gomez-Huelgas R, Perez-Jimenez F, Serrano-Rios M, et al. Clinical decisions in patients with diabetes and other cardiovascular risk fac-tors. A statement of the Spanish Society of Internal Medicine[J]. Re-vista Clinica Espanola (English Edition), 2014, 214(4):209-215.
[106] Quigg M, Harden C. Minimally invasive techniques for epilepsy sur-gery:stereotactic radiosurgery and other technologies[J]. Journal of Neurosurgery, 2014, 121(Suppl):232-240.
[107] Ko T M, Wong C S, Wu J Y, et al. Pharmacogenomics for personal-ized pain medicine[J]. Acta Anaesthesiologica Taiwanica, 2016, 54(1):24-30.
[108] Zambelli V O, Chen C H, Gross E R. Reactive aldehydes:an initial path to develop precision medicine for pain control[J]. Annals of Translational Medicine, 2015, 3(17):258.
[109] Poon K H, Lee T L. Personalised and precision pain medicine:A dream coming true?[J]. Annals of the Academy of Medicine, Singa-pore, 2013, 42(10):545-546.