Spescial Issues

Additive manufacturing:Printed electronics and 3D printing technologies

  • LIU Lei ,
  • LIU Yu ,
  • ZHANG Jie
Expand
  • 1. China Center for Modernization Research, Chinese Academy of Sciences;University of Chinese Academy of Sciences, Beijing 100190, China;
    2. School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China;
    3. Changzhou Institute of Printed Electronics Industry Ltd., Changzhou 213000, China

Received date: 2017-05-24

  Revised date: 2017-07-25

  Online published: 2017-09-18

Abstract

As part of intelligent manufacturing drive, the additive manufacturing has attracted much attention from scientific community and industry. The processes used in printed electronics and 3D printing are typical examples of additive manufacturing. In this article, a review is given for the printed electronics and 3D printing technology development history and status, with emphases on additive processes. After giving the examples of printable device structure and functional performance in electronics and optoelectronics devices, the requirements of the functional materials and additive manufacturing process optimization are introduced for manufacturing ability and better device performance. It is pointed out that the system optimization involving both production process and materials can accelerate the industry application of additive manufacturing to realize the national intelligent manufacturing initiative of made in China 2025.

Cite this article

LIU Lei , LIU Yu , ZHANG Jie . Additive manufacturing:Printed electronics and 3D printing technologies[J]. Science & Technology Review, 2017 , 35(17) : 21 -29 . DOI: 10.3981/j.issn.1000-7857.2017.17.002

References

[1] Chrisey D, Gamota D, Taylor D. Materials development for direct write technologies[C]//MRS Symposium Proceedings. Cambridge:Cambridge Core, 2000:624.
[2] Waldvogel J M, Poulikakos D, Wallace D B, et al. Transport phenome-na in picoliter size solder droplet dispension[J]. Journal of Heat Trans-fer, 1996, 118(1):148-156.
[3] Wallace D B, Hayes D J. Solder jet technology update[J]. Proceedings of SPIE-The International Society for Optical Engineering, 1998, 21(1):1-4.
[4] Szczech J, Megaridis C, Gamota D, et al. Fine-line conductor manufac-turing using drop-on-demand PZT printing technology[J]. IEEE Trans-actions on Electronics Packaging Manufacturing, 2002, 25(1):26-33.
[5] Optomec. Production-grade 3d printing[EB/OL].[2017-06-05]. https://www.optomec.com/.
[6] 李涤尘, 贺健康, 田小永, 等. 增材制造:实现宏微结构一体化制造[J]. 机械工程学报, 2013, 49(6):129-135. Li Dichen, He Jiankang, Tian Xiaoyong, et al. Additive manufacturing:Integrated fabrication of macro/microstructures[J]. Journalof Mechanical Engineering, 2013, 49(6):129-135.
[7] 兰红波, 李涤尘, 卢秉恒. 微纳尺度3D打印[J]. 中国科学(技术科学), 2015, 45(9):919-939. Lan Hongbo, Li Dicheng, Lu Bingheng. Micro-and nanoscale 3D printing[J]. Scientia Sinica(Science Technology), 2015, 45(9):919-939.
[8] Low T, Chaves A, Caldwell J, et al. Lightweight mechanical metamateri-als with tunable negative thermal expansion[J]. Physical Review Letters, 2016, 117(17-21):175901.
[9] Gamota D, Brazis P, Kalyanasundaram K, et al. Printed organic and mo-lecular electronics[M]. New York:Springer, 2004.
[10] Rogers J, Bao Z, Makhij A, et al. Printing process suitable for reel-toreel production of high-performance organic transistors and circuits[J]. Advanced Materials,1999, 11(9):741-745.
[11] Bao Z, Rogers J, Katz H. Printable organic and polymeric semiconduct-ing materials and devices[J]. Journal of Materials Chemistry,1999, 9(9):1895-1904.
[12] Kinder L, Karnicki J, Petroff P, et al. Structure ordering and enhanced mobility in organic polymer thin film transistor[J]. Synthetic Metals, 2004, 146(2):181-185.
[13] Chang J, Sun B, Breiby D, et al. Enhanced mobility of poly(3-hexyl-thiophene) transistors by spin-coating from high-boiling-point solvents[J]. Chemistry of Materials, 2004, 16(23):4772-4776.
[14] Veres J, Ogier S, Leeming S, et al. Low-k insulators as the choice of dielectric in organic field effect transistors[J]. Advanced Functional Materials, 2003, 13(3):199-204.
[15] Suganuma K. Introduction to printed electronics[M]. New York:Spring-er, 2014.
[16] Zhang J, Shmagin I, Skinner J. et al. Material systems used by micro dispensing and ink jetting technologies[C]//Materials Research Society Symposium Proceeding. Cambridge:Cambridge Core, 2000, 624:41-48.
[17] Ostfeld A, Deckman I, Gaikwad A, et al. Screen printed passive com-ponents for flexible power electronics[J]. Scientific Reports, 2015(5):15959.
[18] 张婕, 姜琳, Gamota D, 印刷电子技术[J]. 半导体制造, 2008, 9(7):54-58. Zhang Jie, Jiang Lin, Gamota D. Printing electronic technology[J]. Semiconductor Manufacturing, 2008, 9(7):54-58.
[19] Jiang L, Zhang J, Gamota D, et al. Enhancement of the field-effect mobility of solution processed organic thin film transistors by surface modification of the dielectric[J]. Organic Electronics, 2010, 11(2):344-350.
[20] Rasul A, Zhang J, Gamota D, et al. Flexible high capacitance nano-composite gate insulator for printed organic field-effect transistors[J]. Thin Solid Films, 2010, 518(23):7024-7028.
[21] Hou X, Ng C, Zhang J, et al. Polymer nanocomposite dielectric based on P(VDF-TrFE)/PMMA BaTiO3 for TIPs-Pentacene OFETs[J]. Or-ganic Electronics, 2015(17):247-252.
[22] Kraft U, Sejfic M, Kang M, et al. Flexible low voltage organic comple-mentary circuits finding the optimum combination of semiconductors and monolayer gate dielectrics[J]. Advanced Materials, 2015, 27(2):207-214.
[23] Yu G, Gao J, Hummelen J, et al. Polymer photovoltaic cells:En-hanced efficiencies via a network of internal donor-acceptor hetero-junctions[J]. Science, 1995, 270(5243):1789-1791.
[24] Søndergaard R, Hösel M, Angmo D, et al. Roll-to-roll fabrication of polymer solar cells[J]. Materials Today, 2012, 15(1-2):36-49.
[25] Eugenio C. Applications of organic and printed electronics:A technolo-gy enabled revolution[M]. New York:Springer, 2013.
[26] 宋延林. 从活字印刷到印刷制造[J]. 印刷工业, 2016(10):34-35. Song Yanlin. From movable type to printing manufacturing[J]. Printing Manufacturing, 2016(10):34-35.
[27] Karsa D. Surfactants in polymers, coatings, inks and adhesives[M]. United Kingdom:Taylor & Francis, 2003.
[28] Kim J, Kumar R, Bandodkar A, et al. Advanced materials for printed wearable electronchemical devices:A review[J]. Advanced Electronic Materials, 2017, 3(1):1600260.
[29] Harrey P, Evans P, Ramsey B, et al. Interdigitated capacitors by offset lithography[J]. Journal of Electronics Manufacturing, 2000, 10(1):69-77.
[30] 张乃柏, 郭秋泉, 杨军. 数字打印柔性电子器件的研究进展[J]. 中国科学(物理学力学天文学), 2016:46(4):044608. Zhang Naibo, Guo Qiuquan, Yang Jun. The development of digital printing technologies for flexible electronics devices[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2016:46(4):044608.
[31] Nathan A, Ahnood A, Cole M T, et al. Flexible electronics:The next ubiquitous platform[J]. Proceedings of the IEEE, 2012, 100(5):1486-1517.
[32] Wang X, Liu J. Recent advancements in liquid metal flexible printed electronics:Properties, technologies, and applications[J]. Microma-chines, 2016, 7(12):206.
[33] Rim Y, Bae S, Chen H, et al. Recent process in materials and devices toward printable and flexible sensors[J]. Advanced Materials, 2016, 28(22):4415-4440.
[34] Gao M, Li L, Song Y. Inkjet printing wearable electronic devices[J]. Journal of Material Chemistry C, 2017, 5(12):2971-2993.
[35] Wen Y, Xu J. Scientific importance of water-processable PEDOT-PSS and preparation, challenge and new application in sensors of its film electrode:A review[J]. Journal of Polymer Science:Polymer Chemis-try, 2017, 55(7):1121-1150.
[36] 孙雅洲, 梁迎春, 程凯. 微米和中间尺度机械制造[J]. 机械工程学报, 2004, 40(5):1-6. Sun Yazhou, Liang Yingchun, Cheng Kai. Micro-scale and mesoscale mechanical manufacturing[J]. Chinese Mechanical Engineering, 2004, 40(5):1-6.
[37] Yang H, Pan C, Chou M. Ultra-fine machining tool/mods by liga tech-nology[J]. Journal of Micromechanics and Microengineering, 2001, 11(2):94-99
[38] Weck M, Fischer S, Vos M. Fabrication of microcomponents using ul-traprecision machine tools[J]. Nanotechnology, 1997, 8(3):145-148.
[39] Zheng X, Lee H, Weisgraber T. et al. Ultralight ultrastiff mechanical metamaterials[J]. Science, 2014, 344(6190):1373-1377.
[40] Zheng X, Smith W, Jackson J. et al. Multiscale metallic metamaterials[J]. Nature Material, 2016, 15(10):1100-1106.
[41] Wu Lingling, Tian Xiaoyong, Ma Huifeng. et al. Broadband flattened luneburg lens with ultra-wide angle based on a liquid medium[J]. Ap-plied Physics Letters, 2013, 102(7):074103.
[42] 田小永, 尹丽仙, 李涤尘. 三维超材料制造技术现状与趋势[J]. 光电工程,2017, 44(1):69-76. Tian Xiaoyong, Yin Lixian, Li Dichen. Current situation and trend of fabrication technologies for three-dimensional metamaterials[J]. Opto-Electronics Engineering, 2017, 44(1):69-76.
[43] Wang X, Guo Q, Cai X, et al. Initiator-integrated 3D printing enables the formation of complex metallic architectures[J]. ACS Applied Mate-rials & Interfaces, 2014, 6(4):2583-2587.
[44] Kotz F, Arnold K, Bauer W. et al. Three-dimensional printing of trans-parent fused silica glass[J]. Nature, 2017, 544(7650):337-339.
[45] Eckel Z, Zhou C, Martin J. et al. Additive manufacturing of polymerderived ceramics[J]. Science, 2016, 351(6268):58-62.
[46] Duoss E, Weisgraber T, Hearon K. et al. Three-dimensional printing of elastomeric, cellular architectures with negative stiffness[J]. Ad-vanced Functional Materials, 2014, 24(31):4905-4913.
[47] Lü J, Gong Z, He Z. et al. 3D Printing of mechanically durable super-hydrophobic porous membrane for oil-water separation[J]. Journal of Material Chemistry A, 2017(5):12435-12444.
[48] Sun K, Wei T, Ahn B. et al. 3D printing of interdigitated Li-ion micro-battery architectures[J]. Advanced Materials, 2013, 25(33):4539-4543.
[49] Raney J, Lewis J. Printing mesoscale architectures[J]. MRS Bulletin, 2015, 40(11):943-950.
[50] Nguyen D, Meyers C, Yee T. et al. 3D-printed transparent glass[J]. Advanced Materials, 2017, 29(26):1701181.
[51] Lind J, Busbee T, Valentine A. et al. Instrumented cardiac microphysi-ological devices via multimaterial three-dimensional printing[J]. Na-ture Materials, 2017, 16(3):303-308.
Outlines

/