[1] Huang Y, Li W, Qin M, et al. Printable functional chips based on nanoparticle assembly[J]. Small, 2015, doi:10.1002/smll.201503339.
[2] Tian D, Song Y, Jiang L. Patterning of controllable surface wettability for printing techniques[J]. Chemical Society Reviews, 2013, 42(12):5184-5209.
[3] Su M, Li F, Chen S, et al. Nanoparticle based curve arrays for multi-recognition flexible electronics[J]. Advanced Materials, 2016, 28(7):1369-1374.
[4] Chen S, Su M, Zhang C, et al. Fabrication of nanoscale circuits on ink-jet-printing patterned substrates[J]. Advanced Materials, 2015, 27(26):3928-3933.
[5] Jiang J, Bao B, Li M, et al. Fabrication of transparent multilayer cir-cuits by inkjet printing[J]. Advanced Materials, 2016, 28(7):1420-1426.
[6] Kamyshny A, Magdassi S. Conductive nanomaterials for printed elec-tronics[J]. Small, 2014, 10(17):3515-3535.
[7] Ahn B Y, Duoss E B, Motala M J, et al. Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes[J]. Science, 2009, 323(5921):1590-1593.
[8] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
[9] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191.
[10] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065):197-200.
[11] Zhang Y, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438(7065):201-204.
[12] Stolyarova E, Rim K T, Ryu S, et al. High-resolution scanning tunnel-ing microscopy imaging of mesoscopic graphene sheets on an insulat-ing surface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22):9209-9212.
[13] Cong H P, Chen J F, Yu S H. Graphene-based macroscopic assem-blies and architectures:An emerging material system[J]. Chemical So-ciety Reviews, 2014, 43(21):7295-7325.
[14] Raccichini R, Varzi A, Passerini S, et al. The role of graphene for electrochemical energy storage[J]. Nature Materials, 2015, 14(3):271-279.
[15] Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312(5777):1191-1196.
[16] Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932):1312-1314.
[17] Yang X, Dou X, Rouhanipour A, et al. Two-dimensional graphene na-noribbons[J]. Journal of the American Chemical Society, 2008, 130(13):4216-4217.
[18] Lu X, Yu M, Huang H, et al. Tailoring graphite with the goal of achieving single sheets[J]. Nanotechnology, 1999, 10(3):269-272.
[19] Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Jour-nal of the American Chemical Society, 1958, 80(6):1339.
[20] Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide:Synthe-sis, properties, and applications[J]. Advanced Materials, 2010, 22(35):3906-3924.
[21] Bonaccorso F, Bartolotta A, Coleman J N, et al. 2D-crystal-based functional inks[J]. Advanced Materials, 2016, 28(29):6136-6166.
[22] Yang W, Wang C. Graphene and the related conductive inks for flexi-ble electronics[J]. Journal of Materials Chemistry C, 2016, 4(30):7193-7207.
[23] Li J, Ye F, Vaziri S, et al. Efficient inkjet printing of graphene[J]. Ad-vanced Materials, 2013, 25(29):3985-3992.
[24] Torrisi F, Hasan T, Wu W, et al. Inkjet-printed graphene electronics[J]. ACS Nano, 2012, 6(4):2992-3006.
[25] Secor E B, Prabhumirashi P L, Puntambekar K, et al. Inkjet printing of high conductivity, flexible graphene patterns[J]. The Journal of Physical Chemistry Letters, 2013, 4(8):1347-1351.
[26] Li L, Guo Y, Zhang X, et al. Inkjet-printed highly conductive trans-parent patterns with water based Ag-doped graphene[J]. Journal of Ma-terials Chemistry A, 2014, 2(44):19095-19101.
[27] Li W, Li F, Li H, et al. Flexible circuits and soft actuators by printing assembly of graphene[J]. ACS Applied Materials & Interfaces, 2016, 8(19):12369-12376.
[28] Li W, Li Y, Su M, et al. Printing assembly and structural regulation of graphene towards three-dimensional flexible micro-supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5:16281-16288.
[29] Bao W, Pickel A D, Zhang Q, et al. Flexible, high temperature, planar lighting with large scale printable nanocarbon paper[J]. Advanced Ma-terials, 2016, 28(23):4684-4691.
[30] Yao Y, Fu K K, Yan C, et al. Three-dimensional printable high-tem-perature and high-rate heaters[J]. ACS Nano, 2016, 10(5):5272-5279.
[31] Secor E B, Ahn B Y, Gao T Z, et al. Rapid and versatile photonic an-nealing of graphene inks for flexible printed electronics[J]. Advanced Materials, 2015, 27(42):6683-6688.
[32] El-Kady M F, Kaner R B. Scalable fabrication of high-power gra-phene micro-supercapacitors for flexible and on-chip energy storage[J]. Nature Communications, 2013, 4:1475.
[33] Huang L, Wang Z, Zhang J, et al. Fully printed, rapid-response sen-sors based on chemically modified graphene for detecting NO2 at room temperature[J]. ACS Applied Materials & Interfaces, 2014, 6(10):7426-7433.
[34] Tölle F J, Fabritius M, Mülhaupt R. Emulsifier-free graphene disper-sions with high graphene content for printed electronics and freestand-ing graphene films[J]. Advanced Functional Materials, 2012, 22(6):1136-1144.
[35] Wu Z S, Liu Z, Parvez K, et al. Ultrathin printable graphene superca-pacitors with ac line-filtering performance[J]. Advanced Materials, 2015, 27(24):3669-3675.
[36] Jiang Y, Shao H, Li C, et al. Versatile graphene oxide putty-like mate-rial[J]. Advanced Materials, 2016, 28(46):10287-10292.
[37] Beidaghi M, Wang C. Micro-supercapacitors based on interdigital elec-trodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance[J]. Advanced Functional Materials, 2012, 22(21):4501-4510.
[38] Kuang M, Wang L, Song Y. Controllable printing droplets for high-res-olution patterns[J]. Advanced Materials, 2014, 26(40):6950-6958.
[39] Kuang M, Wang J, Bao B, et al. Inkjet printing patterned photonic crystal domes for wide viewing-angle displays by controlling the slid-ing three phase contact line[J]. Advanced Optical Materials, 2014, 2(1):34-38.
[40] Liu M, Wang J, He M, et al. Inkjet printing controllable footprint lines by regulating the dynamic wettability of coalescing ink droplets[J]. ACS Applied Materials & Interfaces, 2014, 6(16):13344-13348.
[41] Wang L, Li F, Kuang M, et al. Interface manipulation for printing three-dimensional microstructures under magnetic guiding[J]. Small, 2015, 11(16):1900-1904.
[42] Liu Z, Wu Z S, Yang S, et al. Ultraflexible in-plane micro-superca-pacitors by direct printing of solution-processable electrochemically exfoliated graphene[J]. Advanced Materials, 2016, 28(11):2217-2222.
[43] Arapov K, Rubingh E, Abbel R, et al. Conductive screen printing inks by gelation of graphene dispersions[J]. Advanced Functional Materi-als, 2016, 26(4):586-593.
[44] Hyun W J, Secor E B, Hersam M C, et al. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics[J]. Advanced Materials, 2015, 27(1):109-115.
[45] Secor E B, Lim S, Zhang H, et al. Gravure printing of graphene for large-area flexible electronics[J]. Advanced Materials, 2014, 26(26):4533-4538.
[46] Baker J, Deganello D, Gethin D T, et al. Flexographic printing of gra-phene nanoplatelet ink to replace platinum as counter electrode cata-lyst in flexible dye sensitised solar cell[J]. Materials Research Innova-tions 2014, 18(2):86-90.
[47] Lewis J A. Direct ink writing of 3d functional materials[J]. Advanced Functional Materials, 2006, 16(17):2193-2204.
[48] Gao M, Li L, Li W, et al. Direct writing of patterned, lead-free nanow-ire aligned flexible piezoelectric device[J]. Advanced Science, 2016, 3(8):1600120.
[49] Hu J, Yu M F. Meniscus-confined three-dimensional electrodeposi-tion for direct writing of wire bonds[J]. Science, 2010, 329(5989):313-316.
[50] Kim J H, Chang W S, Kim D, et al. 3D printing of reduced graphene oxide nanowires[J]. Advanced Materials, 2015, 27(1):157-161.
[51] Garcia T E, Barg S, Franco J, et al. Printing in three dimensions with graphene[J]. Advanced Materials, 2015, 27(10):1688-1693.
[52] Zhu C, Han T Y, Duoss E B, et al. Highly compressible 3D periodic graphene aerogel microlattices[J]. Nature Communications, 2015, 6:6962.
[53] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant de-fines visual transparency of graphene[J]. Science, 2008, 320(5881):1308.
[54] Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch gra-phene films for transparent electrodes[J]. Nature Nanotechnology, 2010, 5(8):574-578.
[55] Wei D, Wu B, Guo Y, et al. Controllable chemical vapor deposition growth of few layer graphene for electronic devices[J]. Accounts of Chemical Research, 2013, 46(1):106-115.
[56] Li L, Gao M, Guo Y, et al. Transparent Ag@Au-graphene patterns with conductive stability via inkjet printing[J]. Journal of Materials Chemistry C, 2017, 5(11):2800-2806.
[57] Huang X, Leng T, Zhang X, et al. Binder-free highly conductive gra-phene laminate for low cost printed radio frequency applications[J]. Applied Physics Letters, 2015, 106(20):203105.
[58] Huang X, Leng T, Zhu M, et al. Highly flexible and conductive print-ed graphene for wireless wearable communications applications[J]. Sci-entific Reports, 2015, 5:18298.
[59] Xu Y, Sheng K, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010, 4(7):4324-4330.
[60] Qiu L, Liu J Z, Chang S L, et al. Biomimetic superelastic graphenebased cellular monoliths[J]. Nature Communications, 2012, 3:1241.
[61] Cao X, Yin Z, Zhang H. Three-dimensional graphene materials:prepa-ration, structures and application in supercapacitors[J]. Energy & Envi-ronmental Science, 2014, 7(6):1850-1865.
[62] Shehzad K, Xu Y, Gao C, et al. Three-dimensional macro-structures of two-dimensional nanomaterials[J]. Chemical Society Reviews, 2016, 45(20):5541-5588.
[63] Zhou X, Qiao J, Yang L, et al. A review of graphene-based nanostruc-tural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions[J]. Advanced Energy Materi-als, 2014, 4(8):1301523.
[64] Lü L, Zhang P, Cheng H, et al. Solution-processed ultraelastic and strong air-bubbled graphene foams[J]. Small, 2016, 12(24):3229-3234.
[65] An B, Ma Y, Li W, et al. Three-dimensional multi-recognition flexi-ble wearable sensor via graphene aerogel printing[J]. Chemical Com-munications, 2016, 52(73):10948-10951.
[66] Fu K, Wang Y, Yan C, et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries[J]. Advanced Materials, 2016, 28(13):2587-2594.