[1] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor elec-trodes[J]. Chemical Society Reviews, 2009, 38(9):2520-2531.
[2] Lv W, Li Z, Deng Y, et al. Graphene-based materials for electrochemi-cal energy storage devices:Opportunities and challenges[J]. Energy Stor-age Materials, 2016(2):107-138.
[3] Chen D, Feng H, Li J. Graphene oxide:Preparation, functionalization, and electrochemical applications[J]. Chemical Reviews, 2012, 112(11):6027-6053.
[4] Wang Y, Guo J, Wang T, et al. Mesoporous transition metal oxides for supercapacitors[J]. Nanomaterials, 2015, 5(4):1667-1689.
[5] Li Y L, Li L H, Chu G W, et al. Facile preparation of MnO2 with large surface area in a rotor-stator reactor for supercapacitors[J]. Internation-al Journal of Electrochemical Science, 2016, 11(11):9644-9655.
[6] Majeed A, Ullah W, Anwar A W, et al. Graphene-metal oxides/hydrox-ide nanocomposite materials:Fabrication advancements and supercapac-itive performance[J]. Journal of Alloys and Compounds, 2016, 671:1-10.
[7] Li Y L, Li L H, Cao M J, et al. Preparation of nickel-cobalt layered double hydroxides for the battery-like electrodes in rotor-stator reactor[J]. International Journal of Electrochemical Science, 2017, 12:3432-3442.
[8] Li X, Li Q, Wu Y, et al. Two-dimensional, porous nickel-cobalt sulfide for high-performance asymmetric supercapacitors[J]. ACS Applied Mate-rial & Interfaces, 2015, 7(34):19316-19323.
[9] Khan M, Tahir M N, Adil S F, et al. Graphene based metal and metal oxide nanocomposites:Synthesis, properties and their applications[J]. Journal of Materials Chemistry A, 2015, 3(37):18753-18808.
[10] 刘奇. 基于三维网络结构的石墨烯基柔性超级电容器电极的制备与性能研究[D]. 上海:东华大学材料学院, 2016. Liu Qi. Preparation and performance of graphene based electrodes with 3-dimensional structure[D]. Shanghai:School of Materials Science and engineering, Donghua University, 2016.
[11] Shen B, Lang J, Guo R, et al. Engineering the electrochemical capaci-tive properties of microsupercapacitors based on graphene quantum dots/MnO2 using ionic liquid gel electrolytes[J]. ACS Applied Material & Interfaces, 2015, 7(45):25378-25389.
[12] Ujjain S K, Sahu V, Sharma R K, et al. High performance, all solid state, flexible supercapacitor based on Ionic liquid functionalized gra-phene[J]. Electrochimica Acta, 2015, 157:245-251.
[13] Lau P H, Takei K, Wang C, et al. Fully printed, high performance car-bon nanotube thin-film transistors on flexible substrates[J]. Nano Let-ters, 2013, 13(8):3864-3869.
[14] Cai L, Zhang S, Miao J, et al. Fully printed stretchable thin-film tran-sistors and integrated logic circuits[J]. Acs Nano, 2016, 10(12):11459-11468.
[15] Harada S, Kanao K, Yamamoto Y, et al. Fully printed flexible finger-print-like three-axis tactile and slip force and temperature sensors for artificial skin[J]. Acs Nano, 2014, 8(12):12851-12857.
[16] Bade S G R, Li J, Shan X, et al. Fully printed halide perovskite lightemitting diodes with silver nanowire electrodes[J]. Acs Nano, 2016, 10(2):1795-1801.
[17] 周乾隆. 基于石墨烯柔性超级电容器电极材料及器件研究[D]. 成都:电子科技大学微电子学与固体电子学学院, 2016. Zhou Qianlong. The research of graphene based flexible supercapacitor electrode materials and devices[D]. Chengdu:School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, 2016.
[18] Peng X, Peng L, Wu C, et al. Two dimensional nanomaterials for flexi-ble supercapacitors[J]. Chemical Society Reviews, 2014, 43(10):3303-3323.
[19] Shao Y, Elkady M F, Wang L J, et al. Graphene-based materials for flexible supercapacitors[J]. Chemical Society Reviews, 2015, 44(11):3639-3665.
[20] Ramadoss A, Yoon K Y, Kwak M J, et al. Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-dimen-sional-graphene/graphite-paper[J]. Journal of Power Sources, 2017, 337:159-165.
[21] Wei D, Wakeham S J, Ng T W, et al. Transparent, flexible and solidstate supercapacitors based on room temperature ionic liquid gel[J]. Electrochemistry Communications, 2009, 11(12):2285-2287.
[22] Kim D, Lee G, Kim D, et al. Air-stable, high-performance, flexible microsupercapacitor with patterned ionogel electrolyte[J]. ACS Appl Mater Interfaces, 2015, 7(8):4608-4615.
[23] Hong S Y, Yoon J, Jin S W, et al. High-density, stretchable, all-sol-id-state microsupercapacitor arrays[J]. Acs Nano, 2014, 8(9):8844-8855.
[24] Lee K, Lee H, Shin Y, et al. Highly transparent and flexible superca-pacitors using graphene-graphene quantum dots chelate[J]. Nano Ener-gy, 2016, 26:746-754.
[25] Liu Z, Teng F, Chang C, et al. Charge storage performances of microsupercapacitor predominated by two-dimensional (2D) crystal structure[J]. Nano Energy, 2016, 27:58-67.
[26] Lee S, Lee S H, Kim T H, et al. Geometry-controllable graphene lay-ers and their application for supercapacitors[J]. ACS Applied Material & Interfaces, 2015, 7(15):8070-8075.
[27] Zhou Q, Ye X, Wan Z, et al. A three-dimensional flexible supercapac-itor with enhanced performance based on lightweight, conductive gra-phene-cotton fabric electrode[J]. Journal of Power Sources, 2015, 296:186-196.
[28] Sun L, Wang X, Zhang K, et al. Metal-free SWNT/carbon/MnO2 hy-brid electrode for high performance coplanar micro-supercapacitors[J]. Nano Energy, 2016, 22:11-18.
[29] Yun J, Lim Y, Jang G N, et al. Stretchable patterned graphene gas sensor driven by integrated micro-supercapacitor array[J]. Nano Ener-gy, 2016, 19:401-414.
[30] Peng L, Peng X, Liu B, et al. Ultrathin two-dimensional MnO2/gra-phene hybrid nanostructures for high-performance, flexible planar su-percapacitors[J]. Nano Letters, 2013, 13(5):2151-2157.
[31] 叶星柯, 周乾隆, 万中全, 等. 柔性超级电容器电极材料与器件研究进展[J]. 化学通报, 2017, 80(1):10-33, 76. Ye Xingke, Zhou Qianlong, Wan Zhongquan, et al. Research progress in electrode materials and devices of flexible supercapacitors[J]. Chemistry Bulletin, 2017, 80(1):10-33, 76.
[32] Feng J, Sun X, Wu C, et al. Metallic few-layered VS2 ultrathin nanosheets:High two-dimensional conductivity for in-plane superca-pacitors[J]. Journal of the American Chemical Society, 2011, 133(44):17832-17838.
[33] Xie B H, Wang Y, Lai W H, et al. Laser-processed graphene based micro-supercapacitors for ultrathin, rollable, compact and designable energy storage components[J]. Nano Energy, 2016, 26:276-285.
[34] 李亚玲, 辛智青, 曹梅娟, 等. 一种柔性超级电容器电极的制作方法:106783220A[P]. 2017-05-31. Li Yaling, Xin Zhiqing, Cao Meijuan, et al. A preparation method of flexible supercapacitor electrodes:106783220A[P]. 2017-05-31.