Progresses of studies on Mars salts

  • KONG Weigang ,
  • ZHENG Mianping
  • MLR Key Laboratory of Saline Lake Resources and Environments, Institute of Mineral Resources, CAGS, Beijing 100037, China

Received date: 2016-10-28

  Revised date: 2017-04-07

  Online published: 2017-09-18


Salts carry rich information about water related geological processes and aqueous environments,and further are closely related to the origin of life, thus salts on other planets have attracted focus of numerous studies, and the study of Mars salts deserves to be one of the major science goals for future China Mars exploration. For example, jarosite has been detected from mudstone at the landing region, gypsum vein in mudstone and in the unconformable surface have confirmed by curiosity rover, and nitrates have been indicated from windblown deposits and from sedimentary rocks. In addition, perchlorate has been identified by CRISM close to the recurring slope lineae, indicating that the flow of liquid perchlorate brine may account for this recently formed surface feature. All these new findings address again the importance of salts for Mars science. Finally, we propose several key science questions about Mars salts based on current knowledge, and give some prospects for future China Mars exploration.

Cite this article

KONG Weigang , ZHENG Mianping . Progresses of studies on Mars salts[J]. Science & Technology Review, 2017 , 35(17) : 84 -87 . DOI: 10.3981/j.issn.1000-7857.2017.17.011


[1] Clark B C, Baird A K, Rose H J, et al. Inorganic analyses of Martian surface samples at the Viking landing sites[J]. Science, 1976, 194(4271):1283-1288.
[2] Clark B C, Hart D C V. The salts of Mars[J]. Icarus, 1981, 45(2):370-378.
[3] Saunders R S, Arvidson R E, Badhwar G D, et al. 2001 Mars Odyssey mission summary[J]. Space Science Review, 2004, 110(1):1-36.
[4] Chicarro A, Martin P, Trautner R. The Mars Express mission:An over-view[J]. 2004, 1240:3-13.
[5] Zurek R W, Smrekar S E. An overview of the Mars Reconnaissance Or-biter (MRO) science mission[J]. Journal of Geophysical Research, 2007, 112(E5):1-5.
[6] Golombek M P, Cook R A, Economou T, et al. Overview of the Mars Pathfinder mission and assessment of landing site predictions[J]. Sci-ence, 1997, 278(5344):1743-1748.
[7] Squyres S W, Arvidson R E, Baumgartner E T, et al. Athena Mars rov-er science investigation[J]. Journal of Geophysical Research, 2003, 108(E12):8062.
[8] Smith P H, Tamppari L, Arvidson R E, et al. Introduction to special section on the Phoenix Mission:Landing site characterization experi-ments, mission overviews, and expected science[J]. Journal of Geophysi-cal Research, 2008, 113(3):5146-5163.
[9] Grotzinger J P, Crisp J, Vasavada A R, et al. Mars Science Laboratory mission and science investigation[J]. Space Science Review, 2012, 170(1/4):5-56.
[10] Zheng M P, Kong W G, Zhang X F, et al. A comparative analysis of evaporate sediments on Earth and Mars:Implications for the climate change on Mars[J]. Acta Geologica Sinica, 2013, 87(3):885-897.
[11] Mccord T B, Hansen G B, Fanale F P, et al. Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer[J]. Science, 1998, 280(5367):1242-1245.
[12] Postberg F, Kempf S, Schmidt J, et al. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus[J]. Nature, 2009, 459(7250):1098-1101.
[13] 孔维刚, 郑绵平. 行星盐类研究的重要性[J]. 科技导报, 2014, 32(35):15-21. Kong Weigang, Zheng Miangping. Importance of salt studies in planetary science[J]. Science & Technology Review, 2014, 32(35):15-21.
[14] Kong W G, Wang A, Chou I M. Experimental determination of the phase boundary between kornelite and pentahydrated ferric sulfate at 0.1 MPa[J]. Chemical Geology, 2011, 284(3):333-338.
[15] Kong W G, Zheng M P, Kong F J, et al. Sulfate-bearing deposits at Dalangtan Playa and their implication for the formation and preserva-tion of Martian salts[J]. American Mineralogist, 2014, 99(2/3):283-290.
[16] Ehlmann B L, Edwards C S. Mineralogy of the Martian surface[J]. An-nual Review of Earth and Planetary Sciences, 2014, 42(1):291-315.
[17] Arvidson R E. Aqueous history of Mars as inferred from landed mis-sion measurements of rocks, soils, and water ice[J]. Journal of Geo-physical Research Planets, 2016, 121(1):1602-1626.
[18] Grotzinger J P, Sumner D Y, Kah L C, et al. A habitable fluvio-lacus-trine environment at Yellowknife Bay, Gale Crater, Mars[J]. Science, 2014, 343(6169):1242777.
[19] Grotzinger J P, Gupta S, Malin M C, et al. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars[J]. Sci-ence, 2015, 350(6257):7575.
[20] Cavanagh P D, Bish D L, Blake D F, et al. Confidence Hills mineralo-gy and CheMin results from base of Mt. Sharp, Pahrump Hills, Gale Crater, Mars[C]//Lunar and Planetary Science Conference XLVI. Hous-ton:LPI, 2015, 2735.
[21] Vaniman D T, Bish D L, Ming D W, et al. Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars[J]. Science, 2014, 343(6169):1243480.1-1243480.14.
[22] Nachon S M, Clegg S M, Mangold N, et al. Calcium sulfate veins char-acterized by ChemCam/Curiosity at Gale Crater, Mars[J]. Journal of Geophysical Research Planets, 2014, 119(9):1991-2016.
[23] Schieber J, Bish D, Coleman M, et al. Encounters with an unearthly mudstone:Understanding the first mudstone found on Mars[J]. Sedi-mentology, 2016, Doi:10.1111/sed.12318.
[24] Hussain M, Warren J K. Nodular and enterolithic gypsum:The "Sab-kha-tization" of Salt Flat Playa, west Texas[J]. Sedimentary Geology, 1989, 63(1/3):13-24.
[25] Stern J C, Sutter B, Freissinetet C, et al. Evidence for indigenous nitro-gen in sedimentary and Aeolian deposits from the Curiosity rover in-vestigations at Gale Crater, Mars[J]. Proceedings of the National Acad-emy of Sciences, 2015, 112(14):4245-4250.
[26] Stern J C, Sutter B, Jackson W A, et al. The nitrate/(per)chlorate rela-tionship on Mars[J]. Geophysical Research Letters, 2017, doi:10.1002/2016GL072199.
[27] Hecht M H, Kounaves S P, Quinn R C, et al. Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander site[J]. Science, 2009, 325(5936):64-67.
[28] Toner J D, Catling D C, Light B. Soluble salts at the Phoenix Lander site, Mars:A reanalysis of the Wet Chemistry Laboratory data[J]. Geo-chimica et Cosmochimica Acta, 2014, 136:142-168.
[29] Ojha L, Wilhelm M B, Murchie S L, et al. Spectral evidence for hy-drated salts in recurring slope lineae on Mars[J]. Nature Geoscience, 2015, 8(11):829-832.
[30] Zheng M P, Wang A, Kong F J, et al. Saline lakes on Qinghai-Tibet Plateau and salts on Mars[C]//Lunar and Planetary Science Conference XL. Houston:LPI, 2009:1454.
[31] Kong F J, Kong W G, Hu B. et al. Meteorological data, surface temper-ature and moisture conditions at the Dalangtan Mars analogous site, in Qinghai-Tibet Plateau, China[C]//Lunar and Planetary Science Confer-ence XLIV. Houston:LPI, 2013:1336.
[32] Xiao L, Wang J, Dang Y, et al. A new terrestrial analogue site for Mars research:The Qaidam Basin, Tibetan Plateau (NW China)[J]. Earth Science Reviews, 2016, 164:84-101.