Spescial Issues

Review on soft-bodied robots

  • HOU Taogang ,
  • WANG Tianmiao ,
  • SU Haohong ,
  • CHANG Shuai ,
  • CHEN Lingkun ,
  • HAO Yufei ,
  • WEN Li
  • 1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China;
    2. Shenyuan Honors College, Beihang University, Beijing 100083, China

Received date: 2017-05-03

  Revised date: 2017-08-15

  Online published: 2017-09-25


With the advancement of the materials science, the chemistry, and the control technology, substantial knowledge about the mollusks is gained, including the octopus, the worm, and the starfish, which helps the development of a new type of robots:the soft robots. This paper reviews the development of the soft robots in recent years, focusing on the potential challenges in the materials, the driving methods, and the fields of applications. With consideration of China's national condition, this paper discusses the future prospect of the soft robots.

Cite this article

HOU Taogang , WANG Tianmiao , SU Haohong , CHANG Shuai , CHEN Lingkun , HAO Yufei , WEN Li . Review on soft-bodied robots[J]. Science & Technology Review, 2017 , 35(18) : 20 -28 . DOI: 10.3981/j.issn.1000-7857.2017.18.002


[1] 倪受东, 袁祖强, 文巨峰. 冗余度机器人机构学研究现状[J]. 南京工业大学学报(自然科学版), 2002, 24(4):107-110. Ni Shoudong, Yuan Zuqiang, Wen Jufeng. Research actuality of redun-dant robot mechanism[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2002, 24(4):107-110.
[2] 王洁. 连续型机器人研究综述[J]. 环球市场信息导报, 2012(3):37. Wang Jie. A review on continuum robot[J]. Global Market Information Gulde, 2012(3):37.
[3] Gravagne I A, Walker I D. On the kinematics of remotely-actuated con-tinuum robots[C/OL].[2017-05-01]. http://web.ecs.baylor.edu/faculty/gravagnei/archived/ICRA_2000a.pdf.
[4] Kim S, Laschi C, Trimmer B. Soft robotics:A bioinspired evolution in robotics[J]. Trends in Biotechnology, 2013, 31(5):287-294.
[5] 尤小丹, 宋小波, 陈峰. 软体机器人的分类与加工制造研究[J]. 自动化仪表, 2014, 35(8):5-9. You Xiaodan, Song Xiaobo, Chen Feng. Research on the classification and processing manufacturing of soft robots[J]. Process Automation In-strumentation, 2014, 35(8):5-9.
[6] Suzumori K. Flexible microactuator:1st report, static characteristics of 3 DOF actuator[J]. Transactions of the Japan Society of Mechanical En-gineers C, 1989, 55(518):2547-2552.
[7] Suzumori K. Flexible microactuator:2nd report, dynamic characteristics of 3 DOF actuator[J]. Transactions of the Japan Society of Mechanical Engineers C, 1990, 56(527):1887-1893.
[8] Wakimoto S, Suzumori K. Fabrication and basic experiments of pneu-matic multi-chamber rubber tube actuator for assisting colonoscope in-sertion[C]. Robotics and Automation (ICRA), 2010 IEEE International Conference on, Anchorage, AK, May 3-7, 2010.
[9] Suzumori K, Endo S, Kanda T, et al. A bending pneumatic rubber actu-ator realizing soft-bodied manta swimming robot[C/OL].[2017-05-01]. http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_ICRA_2010/data/papers/0232.pdf.
[10] 曹玉君, 尚建忠, 梁科山, 等. 软体机器人研究现状综述[J]. 机械工程学报, 2012, 48(3):25-33. Cao Yujun, Shang Jianzhong, Liang Keshan, et al. Review of soft-bod-ied robots[J]. Journal of Mechanical Engineering, 2012, 48(3):25-33.
[11] Tolley M T, Shepherd R F, Mosadegh B, et al. A resilient, untethered soft robot[J]. Soft Robotics, 2014, 1(3):213-223.
[12] Cianchetti M, Calisti M, Margheri L, et al. Bioinspired locomotion and grasping in water:The soft eight-arm OCTOPUS robot[J]. Bioinspira-tion & Biomimetics, 2015, 10(3):035003.
[13] Wehner M, Truby R L, Fitzgerald D J, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots[J]. Nature, 2016, 536(7617):451.
[14] 王宁扬, 孙昊, 姜皓, 等. 一种基于蜂巢气动网络的软体夹持器抓取策略研究[J]. 机器人, 2016, 38(3):371-377. Wang Ningyang, Sun Hao, Jiang Hao, et al. On grasp strategy of hon-eycomb pneunets soft gripper[J]. Robot, 2016, 38(3):371-377.
[15] Shepherd R F, Ilievski F, Choi W, et al. Multigait soft robot[J]. PA-NA, 2011, 108(51):20400.
[16] 徐云霞. 离子聚合物金属复合材料的电极修饰和硅橡胶粘附性能的改性研究[D]. 南京:南京航空航天大学, 2013. Xu Yunxia. The electrode modification of ionic polymer metal compos-ite and improvement of PDMS adhesion performance[D]. Nanjing:Nan-jing University of Aeronautics and Astronautics, 2013.
[17] Cheng N G, Lobovsky M B, Keating S J, et al. Design and analysis of a robust, kow-cost, highly articulated manipulator enabled by jam-ming of granular media[C]//IEEE International Conference on Robot-ics and Automation. New York:IEEE, 2012:4328-4333.
[18] 王超. 线驱动硅胶软体机械臂建模与控制[D]. 上海:上海交通大学, 2015. Wang Chao. Dynamics and control of gable-driven silicone soft manip-ulator[D]. Shanghai:Shanghai Jiao Tong Universit. 2015.
[19] 梅海霞. 基于压敏硅橡胶的柔性压力传感器及其阵列的研究[D]. 长春:吉林大学, 2016. Mei Haixia. Study on a flexible pressure sensor and the array based on sensitive silicon rubber[D]. Changchun:Jilin University, 2016.
[20] Kim S, Laschi C, Trimmer B. Soft robotics:A bioinspired evolution in robotics[J]. Trends in Biotechnology, 2013, 31(5):287.
[21] Kim J S, Lee J Y, Lee K T, et al. Fabrication of 3D soft morphing structure using shape memory alloy (SMA) wire/polymer skeleton com-posite[J]. Journal of Mechanical Science and Technology, 2013, 27(10):3123-3129.
[22] Jin H, Dong E, Mao S, et al. Locomotion modeling of an actinomor-phic soft robot actuated by SMA springs[C]//IEEE International Confer-ence on Robotics and Biomimetics. New York:IEEE, 2015:21-26.
[23] Nakabo Y, Mukai T, Asaka K. Biomimetic soft robots using IPMC[M]//Electroactive Polymers for Robotic Applications. London:Springer, 2007:165-198.
[24] Stoimenov B L, Rossiter J, Mukai T. Soft ionic polymer metal compos-ite (IPMC) robot[J]. Spie Eapad, 2009, doi:10.1117/12.818705.
[25] Kempaiah R, Nie Z. From nature to synthetic systems:Shape transfor-mation in soft materials[J]. Journal of Materials Chemistry B, 2014, 2(17):2357-2368.
[26] Rus D, Tolley M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521(7553):467.
[27] Schulte H F. The characteristic of the McKibben artificial muscle[J]. The application of external power in prosthetics and orthotics, 1962:94-115.
[28] Chou C P, Hannaford B. Measurement and modeling of McKibben pneumatic artificial muscles[J]. Robotics & Automation IEEE Transac-tions on, 1992, 12(1):90-102.
[29] Roche E T, Horvath M A, Wamala I, et al. Soft robotic sleeve sup-ports heart function[J]. Science Translational Medicine, 2017, 9(373):eaaf3925.
[30] Onal C D, Rus D. Autonomous undulatory serpentine locomotion utiliz-ing body dynamics of a fluidic soft robot[J]. Bioinspiration & Biomi-metics, 2013, 8(2):026003.
[31] Steltz E, Mozeika A, Rodenberg N, et al. JSEL:Jamming skin enabled locomotion[C]//Proceedings of the 2009 IEEE/RSJ International Confer-ence on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2010:5672-5677.
[32] Wehner M, Tolley M T, Mengüç Y, et al. Pneumatic energy sources for autonomous and wearable soft robotics[J]. Soft Robotics, 2014, 1(4):263-274.
[33] Katzschmann R K, Marchese A D, Rus D. Hydraulic autonomous soft robotic fish for 3D swimming[C]//International Symposium on Experi-mental Robotics (ISER 2014).[2017-06-30]. http://groups.csail.mit.edu/drl/wiki/images/archive/a/a5/20141003204304!Hydraulic_Autono-mous_Soft_Fish-RKatzschmann_AMarchese_DRus_Final_Submission.pdf.
[34] Tolley M T, Shepherd R F, Karpelson M, et al. An untethered jump-ing soft robot[C]//Proceedings of the 20014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2014:561-566.
[35] De Gennes P G. Soft matter[J]. Reviews of Modern Physics, 1992, 64(3):645-648.
[36] Barcohen Y, Xue T, Joffe B, et al. Electroactive polymers (EAP) lowmass muscle actuators[J]. Proceedings of SPIE-The International Soci-ety for Optical Engineering. Bellingham, WA:SPIE, 1998, 3041:697-701.
[37] Nakabo Y, Asaka K. Biomimetic soft robots with artificial muscles[C]//Proceedings of SPIE-The International Society for Optical Engineer-ing. Bellingham, WA:SPIE, 2004, 5648:132-144.
[38] Nakabo Y, Mukai T, Asaka K. Kinematic modeling and visual sensing of multi-DOF robot manipulator with patterned artificial muscle[C]//IEEE International Conference on Robotics and Automation. Piscat-away, NJ:IEEE Press, 2006:4315-4320.
[39] Kofod G, Wirges W, Paajanen M, et al. Energy minimization for selforganized structure formation and actuation[J]. Applied Physics Let-ters, 2007, 90(8):081916-081916-3.
[40] Jung K, Koo J C, Nam J D, et al. Artificial annelid robot driven by soft actuators[J]. Bioinspiration & Biomimetics, 2007, 2(2):S42-S49.
[41] Majidi C. Soft robotics:A perspective-current trends and prospects for the future[J]. Soft Robotics, 2014, 1(1):5-11.
[42] Polygerinos P, Wang Z, Galloway K C, et al. Soft robotic glove for combined assistance and at-home rehabilitation[J]. Robotics & Auton-omous Systems, 2014, 73:135-143.
[43] Maeder-York P, Clites T, Boggs E, et al. Biologically inspired soft ro-bot for thumb rehabilitation[J]. Journal of Medical Devices, 2014, 8(2):020934.
[44] Asbeck A T, Dyer R J, Larusson A F, et al. Biologically-inspired soft exosuit[C/OL].[2017-06-30]. http://vigir.missouri.edu/~gdesouza/Re-search/Conference_CDs/IEEE_ICORR_2013/contents/papers/245.pdf.
[45] Sugiyama Y, Hirai S. Crawling and jumping by a deformable robot[J]. International Journal of Robotics Research, 2006, 25(5/6):603-620.
[46] Hawkes E W, Blumenschein L H, Greer J D, et al. A soft robot that navigates its environment through growth[J]. Science Robotics, 2017, 2(8):eaan3028.
[47] Lee C, Park W J, Kim M, et al. Pneumatic-type surgical robot end-ef-fector for laparoscopic surgical-operation-by-wire[J]. BioMedical En-gineering OnLine, 2014, 13(1):130.
[48] Jiang A, Secco E L, Würdemann H, et al. Stiffness-controllable octo-pus-like robot arm for minimally invasive surgery[C]//Joint Workshop on New Technologies for Computer/robot Assisted Surgery. 2013.
[49] Feinberg A W, Feigel A, Shevkoplyas S S, et al. Muscular thin films for building actuators and powering devices.[J]. Science, 2007, 317(5843):1366.
[50] Justus K, Saurabh S, Bruchez M, et al. Integrating synthetic cells and flexible electronics for the control of bio-opto-fluidic materials[J]. Bio-physical Journal, 2014, 106(2):617a-618a.