According to Tsai theory, axial tensile experiments are carried out for basalt fiber-epoxy resin composite material (BFRP), with fiber volume fractions of 0.6%, 0.9%, 1.2% and 1.5%, and fiber orientation angle of 0°, 15°, 30° and 45°. The fiber sharing coefficient and the clustering fiber content are adopted to characterize the clustering effect of the basalt fiber in the epoxy resin, and to establish the micromechanics model and the geometry model of the clustering fiber. Meanwhile, the tensile strength of the BFRP is numerically calculated and compared.The results show that, when the fiber volume fraction is fixed, the BFRP tensile strength is decreased with the increase of the fiber orientation angle, and when the fiber orientation angle is fixed, the BFRP tensile strength is increased with the increase of the fiber volume fraction. The fiber sharing coefficient is decreased with the increase of the fiber vol-ume fraction, and the clustering fiber content is increased with the increase of the fiber volume fraction. The fiber clustering effect increases the BFRP critical fiber volume fraction as compared with the sharing one, and decreases the enhancement amplitude of the tensile strength of the basalt fiver in the epoxy resin substrate. The calculated values of the BFRP tensile strength with consideration of the fiber clustering effect are close to the experimental results.
[1] Elgabbas F, El-ghandour A A, Abdelrahman A A, et al. Different CFRP strengthening techniques for pre-stressed hollow core concrete slabs:Experimental study and analytical investigation[J]. Composite Structures, 2010, 92(2):401-411.
[2] Pilakoutas K, Neocleous K, Guadagnini M. Design philosophy issues of fiber reinforced polymer reinforced concrete structures[J]. Journal of Composites for Construction, 2002, 6(6):154-161.
[3] 朱德举, 欧云福. 应变速率和温度对单束BFRP力学性能的影响[J]. 建筑材料学报, 2016, 19(3):491-495. Zhu Deju, Ou Yunfu. Effects of strain rate and temperature on mechan-ical behavior of single yarn BFRP[J]. Journal of Building Materials, 2016, 19(3):491-495.
[4] Lopresto V, Leone C, Iorio I D. Mechanical characterisation of basalt fi-bre reinforced plastic[J]. Composites Part B, 2011, 42(4):717-723.
[5] Lee J H. Rhee K Y. Park S J. The tensile and thermal properties of modified CNT-reinforced basalt/epoxy composites[J]. Materials Science & Engineering A, 2010, 527(26):6838-6843.
[6] Todic A, Nedeljkovic B, Cikara D, et al. Particulate basalt-polymer composites characteristics investiga-tion[J]. Materials & Design, 2011, 32(3):1677-1683.
[7] Colombo C, Vergani L, Burman M. Static and fatigue characteristion of new basalt fiber reinforced composites[J]. Composite Structures, 2012, 94(3):1165-1174.
[8] Huonnic N, Abdelghani M, Mertiny P, et al. Deposition and character-ization of flame-sprayed aluminum on cured glass and basalt fiber-rein-forced epoxy tubes[J]. Surface & Coatings Technology, 2010, 205(3):867-873.
[9] 叶国锐,晏义伍,曹海琳. 氧化石墨烯改性玄武岩纤维及其增强环氧树脂复合材料性能[J]. 复合材料学报, 2014, 31(06):1402-1408. Ye Guorui, Yan Yiwu, Cao Hailin. Basalt fiber modified with graphene oxide and properties of its reinforced epoxy composites[J]. Acta Materi-ae Compositae Sinica, 2014, 31(6):1402-1408.
[10] 秦计生, 彭雄奇, 申杰, 等. 考虑纤维方向分布的玻纤增强PP复合材料拉伸性能[J]. 复合材料学报, 2013, 30(4):53-58. Qin Jisheng, Peng Xiongqi, Shen Jie, et al. Tensile properties of glass fiber reinforced PP composite consid-ering fiber orientations[J]. Acta Materiae Compositae Sinica, 2013, 30(4):53-58.
[11] Fletcher A J, Oakeshott J L. Thermal residual microstress generation during the processing of unidirec-tional carbon fibre/epoxy resin com-posites:random fibre arrays[J]. Composites, 1994, 25(8):806-813.
[12] 杨雷, 刘新, 高东岳, 等. 考虑纤维随机分布的复合材料热残余应力分析及其对横向力学性能的影响[J]. 复合材料学报, 2016, 33(3):525-534. Yang Lei, Liu Xin, Gao Dongyue,et al. Analysis on thermal residual stress of composites with random fiber distribution and its effects on transverse mechanical properties[J]. Acta Materiae Compositae Sinica, 2016, 33(3):525-534.
[13] Hobbiebrunken T, Hojo M, Jin K K, et al. Influence of non-uniform fi-ber arrangement on microscopic stress and failure initiation in thermal-ly and transversely loaded CF/epoxy laminated composites[J]. Composites Science & Technology, 2008, 68(15-16):3107-3113.
[14] Yang C, Huang H X, Li K. Investigation of fiber orientation states in injection-compression molded short-fiber-reinforced thermoplastics[J]. Polymer Composites, 2010, 31(11):1899-1908.
[15] Ye Z, Lee D, Campbell S A, et al. Thermally enhanced single-walled carbon nanotube microfluidic align-ment[J]. Microelectronic Engineer-ing, 2011, 88(9):2919-2923.
[16] Liu Y, Yang J P, Xiao H M, et al. Role of matrix modification on inter-laminar shear strength of glass fibre/epoxy composites[J]. Composites Part B Engineering, 2012, 43(1):95-98.
[17] Tsai S W, Wu E M. A general theory of strength for anisotropic materi-als[J]. Journal of Composite Materials, 1971, 5(1):58-80.
[18] Liu K S, Tsai S W. A Progressive quadratic failure criterion for a lami-nate 1[J]. Composites Science & Technology, 1998, 58(7):1023-1032.
[19] 杜国平. 纤维混凝土单层衬砌隧道稳定性研究[D]. 重庆:重庆大学, 2013. Du Guoping. Research on stability of fiber reinforced concrete among single layer tunneling lining[D]. Chongqing:Chongqing University, 2013.
[20] 陈伟力. 聚丙烯、玻璃纤维混凝土物理力学性能试验研究[D]. 福州:福州大学, 2004. Chen Weili. The performance experimental study of concrete with polypropylene fiber and glass fiber[D]. Fuzhou:Fuzhou University, 2004.
[21] 王世君. 纤维混凝土在拉压下应力传递机理的分析[D]. 哈尔滨:哈尔滨工程大学, 2006. Wang Shijun. The analysis of stress transfer mechanism in fiber con-crete under pull and pressure[D]. Harbin:Harbin Engineering Univer-sity. 2006.
[22] Fukuda H, Kawata K. On the strength distribution of unidirectional fi-bre composites[J]. Fibre Science & Technology, 1977, 10(1):53-63.
[23] 邹龙, 李新娥, 孙卫国, 等. 玄武岩丝性能测试[J]. 西安工程大学学报, 2013, 27(3):314-318. Zou Long, Li Xine, Sun Weiguo, et al. Performance evaluation of ba-salt filament[J]. Journal of Xi'an Polytechnic University, 2013, 27(3):314-318.