Reviews

Researches on the gene clusters of amphotericin B and its combinatorial biology

  • ZHANG Bo ,
  • ZHANG Haidong ,
  • ZHOU Yiteng ,
  • HUANG Kai ,
  • LIU Zhiqiang
Expand
  • Key Laboratory of Bioorganic Synthesis of Zhejiang Province;College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China

Received date: 2017-03-21

  Revised date: 2017-05-15

  Online published: 2017-10-18

Abstract

Amphotericin B, as the first drug against deep fungal infection which has been used for more than fifty years, is still an indispensable antibiotic in clinical treatment. In recent years, with the development of AmB derivatives, the analysis of genome of the Streptomyces nodosus and the metabolic pathways of AmB, more and more strategies involving genetic engineering and metabolic engineering were used to study the combinatorial biosynthesis of AmB. It's obviously AmB paly an important role in clinical treatment, for this reason developing the production of AmB has significant economic and social benefits. Herein, a brief summary of AmB, the organization of the AmBiosynthetic gene cluster and its current combinatorial biosynthesis is reviewed.

Cite this article

ZHANG Bo , ZHANG Haidong , ZHOU Yiteng , HUANG Kai , LIU Zhiqiang . Researches on the gene clusters of amphotericin B and its combinatorial biology[J]. Science & Technology Review, 2017 , 35(19) : 74 -80 . DOI: 10.3981/j.issn.1000-7857.2017.19.010

References

[1] Gallis H A, Drew R H, Pickard W W. Amphotericin B:30 years of clin-ical experience[J]. Reviews of Infectious Diseases, 1990, 12(2):308-329.
[2] Aparicio J F, Mendes M V, Anton N, et al. Polyene macrolide antibiot-ic biosynthesis[J]. Current Medicinal Chemistry, 2004, 11(14):1643-1656.
[3] Jones J, Kosloff B R, Benveniste E N, et al. Amphotericin-B-mediated reactivation of latent HIV-1 infection[J]. Virology, 2005, 331(1):106-116.
[4] Chappuis F, Sundar S, Hailu A, et al. Visceral leishmaniasis:What are the needs for diagnosis, treatment and control[J]. Nature Reviews Micro-biology, 2007, 5(11):873-882.
[5] Sundar S, Rai M, Chakravarty J, et al. New treatment approach in Indi-an visceral leishmaniasis:Single-dose liposomal amphotericin B fol-lowed by short-course oral miltefosine[J]. Clinical Infectious Diseases, 2008, 47(8):1000-1006.
[6] Machadosilva A, Tavares C A, Sinisterra R D. New perspectives for leishmaniasis chemotherapy over current anti-leishmanial drugs:A pat-ent landscape[J]. Expert Opinion on Therapeutic Patents, 2015, 25(3):247-260.
[7] Golgher D, Vianna C H, Moura A C. Drugs against leishmaniasis:Over-view of market needs and pipeline[J]. Drug Development Research, 2011, 72(6):463-470.
[8] Luke R G, Boyle J A. Renal effects of amphotericin B lipid complex[J]. American Journal of Kidney Diseases, 1998, 31(31):780-785.
[9] Halperin A, Shadkchan Y, Pisarevsky E, et al. Novel water-soluble am-photericin B-PEG conjugates with low toxicity and potent in vivo effica-cy[J]. Journal of Medicinal Chemistry, 2016, 59(3):1197-1206.
[10] Sweeney P, Murphy C D, Caffrey P. Exploiting the genome sequence of Streptomyces nodosus for enhanced antibiotic production[J]. Applied Microbiology & Biotechnology, 2016, 100(3):1285-1295.
[11] Caffrey P, Lynch S, Flood E, et al. Amphotericin biosynthesis in Strep-tomyces nodosus:Deductions from analysis of polyketide synthase and late genes[J]. Chemistry & Biology, 2001, 8(7):713-723.
[12] Carmody M, byrne B, Murphy B, et al. Analysis and manipulation of amphotericin biosynthetic genes by means of modified phage KC515 transduction techniques[J]. Gene, 2004, 343(1):107-115.
[13] Mcnamara C M, Crawforth J M, Hickman B S, et al. Biosynthesis of amphotericin B[J]. Journal of the Chemical Society Perkin Transac-tions, 1998, 1(1):83-88.
[14] Byrne B, Carmody M, Gibson E, et al. Biosynthesis of deoxyamphoteri-cins and deoxyamphoteronolides by engineered strains of Streptomyces nodosus[J]. Chemistry & Biology, 2003, 10(12):1215-1224.
[15] Qiu J F, Zhuo Y, Zhu D Q, et al. Overexpression of the ABC transport-er AvtAB increases avermectin production in Streptomyces avermitilis[J]. Applied Microbiology & Biotechnology, 2011, 92(2):337-45.
[16] 刘静, 姜春艳, 张部昌, 等. ABC转运蛋白基因slnTI和slnTⅡ与盐霉素生物合成的相关性[J]. 微生物学通报, 2014, 41(1):58-66. Liu Jing, Jiang Chunyan, Zhang Buchang, et al. Involvement of ABC transporter genes slnTI and slnTⅡ in salinomycin biosynthesis[J]. Microbiology China, 2014, 41(1):58-66.
[17] Guerra S M, Rodríguezgarcía A, Santosaberturas J, et al. LAL Regula-tors SCO0877 and SCO7173 as pleiotropic modulators of phosphate starvation response and actinorhodin biosynthesis in Streptomyces coeli-color[J]. PLoS One, 2012, 7(2):e31475.
[18] Sekurova O N, Brautaset T, Sletta H, et al. In vivo analysis of the reg-ulatory genes in the nystatin biosynthetic gene cluster of Streptomyces noursei ATCC 11455 reveals their differential control over antibiotic biosynthesis[J]. Journal of Bacteriology, 2004, 186(5):1345-1354.
[19] Du Y L, Chen S F, Cheng L Y, et al. Identification of a novel Strepto-myces chattanoogensis L10 and enhancing its natamycin production by overexpressing positive regulator ScnRⅡ[J]. Journal of Microbiology, 2009, 47(4):506-513.
[20] Wu H L, Liu W C, Dong D, et al. SlnM gene overexpression with dif-ferent promoters on natamycin production in Streptomyces lydicus A02[J]. Journal of Industrial Microbiology & Biotechnology, 2014, 41(1):163-172.
[21] Chéron M, Cybulska B, Mazerski J, et al. Quantitative structure-activi-ty relationships in amphotericin B derivatives[J]. Biochemical Pharma-cology, 1988, 37(5):827-836.
[22] Nicolaou K C, Chakraborty T K, Daines R A, et al. Amphoteronolide B methyl ester. novel oxidative deglycosidation of amphotericin B[J]. Journal of the Chemical Society, Chemical Communications, 1987, 76(9):686-689.
[23] Szlinder-richert J, Mazerski J, Cybulska B, et al. MFAME, N-methylN-D-fructosyl amphotericin B methyl ester, a new amphotericin B de-rivative of low toxicity:relationship between self-association and ef-fects on red blood cells[J]. Biochimica et Biophysica Acta, 2001, 1528(1):15-24.
[24] Szlinder-richer J, Cybulska B, Grzybowska J, et al. Interaction of am-photericin B and its low toxic derivative, N-methyl-N-D-fructosyl amphotericin B methyl ester, with fungal, mammalian and bacterial cells measured by the energy transfer method[J]. Il Farmaco, 2004, 59(4):289-296.
[25] Power P, Dunne T, Murphy B, et al. Engineered synthesis of 7-oxoand 15-deoxy-15-oxo amphotericins:insights into structure-activity relationships in polyene antibiotics[J]. Chemistry & Biology, 2008, 15(1):78-86.
[26] Paquet V, Carreira E M. Significant improvement of antifungal activity of polyene macrolides by bisalkylation of the mycosamine[J]. Organic Letters, 2006, 8(9):1807-1809.
[27] Taylor A W, Costello B, Hunter P A, et al. Synthesis and antifungal selectivity of new derivatives of amphotericin B modified at the C-13 position[J]. The Journal of Antibiotics, 1992, 46(3):486-493.
[28] Tsuchikawa H, Matsushita N, Matsumori N, et al. Synthesis of 28-19F-amphotericin B methyl ester[J]. Tetrahedron Letters, 2006, 47(35):6187-6191.
[29] Matsumori N, Umegawa Y, Oishi T, et al. Bioactive fluorinated deriva-tive of amphotericin B[J]. Bioorganic & Medicinal Chemistry Letters, 2005, 15(15):3565-3567.
[30] Brautaset T, Sletta H, Nedal A, et al. Improved antifungal polyene macrolides via engineering of the nystatin biosynthetic genes in Strep-tomyces noursei[J]. Chemistry & Biology, 2008, 15(11):1198-1206.
[31] Zhou Y J, Li J L, Zhu J, et al. Incomplete -ketone processing as a mechanism for polyene structural variation in the FR-008/candicidin complex[J]. Chemistry & Biology, 2008, 15(6):629-638.
[32] Mendes M V, Recio E, Fouces R, et al. Engineered biosynthesis of novel polyenes:A pimaricin derivative produced by targeted gene dis-ruption in Streptomyces natalensis[J]. Chemistry & Biology, 2001, 8(7):635-644.
[33] Seco E M, Cuesta T, Fotso S, et al. Two polyene amides produced by genetically modified Streptomyces diastaticus var. 108[J]. Chemistry & Biology, 2005, 12(5):1093-1101.
[34] Nic-lochlainn L, Caffrey P. Phosphomannose isomerase and phospho-mannomutase gene disruptions in Streptomyces nodosus:Impact on am-photericin biosynthesis and implications for glycosylation engineering[J]. Metabolic Engineering, 2009, 11(1):40-7.
[35] Volokhan O, Sletta H, Ellingsen T E, et al. Characterisation of the P450 monooxygenase NysL, responsible for C-10 hydroxylation during biosynthesis of the polyene macrolide antibiotic nystatinin Streptomy-ces noursei[J]. Applied and Environmental Microbiology, 2006, 72(4):2514-2519.
[36] Mendes M V, Recio E, Fouces R, et al. Engineered biosynthesis of novel polyenes:a pimaricin derivative produced by targeted gene dis-ruption in Streptomyces natalensis[J]. Chemistry & Biology, 2001, 8(7):635-644.
[37] Carmody M, Murphy B, Byrne B, et al. Biosynthesis of amphotericin derivatives lacking exocyclic carboxyl groups[J]. Journal of Biological Chemistry, 2005, 280(41):34420-34426.
[38] Brautaset T, Sletta H, Nedal A, et al. Improved antifungal polyene macrolides via engineering of the nystatin biosynthetic genes in Strep-tomyces noursei[J]. Chemistry & Biology, 2008, 15(11):1198-1206.
[39] Zhen Q, Kang Q, Jiang C, et al. Engineered biosynthesis of pimaricin derivatives with improved antifungal activity and reduced cytotoxicity[J]. Applied Microbiology and Biotechnology, 2015, 99(16):6745-6752.
[40] Murphy B, Anderson K, Borissow C, et al. Isolation and charaicterisa-tion of amphotericin B analogues and truncated polyketide intermedi-ates produced by genetic engineering of Streptomyces nodosus[J]. Or-ganic & Biomolecular Chemistry, 2010, 8(16):3758-3770.
[41] Stephens N, Rawlings B, Caffrey P. Streptomyces nodosus host strain optimized for polyene glycosylation engineering[J]. Bioscience Biotech-nology and Biochemistry, 2012, 76(2):384-387.
[42] Hutchinson E, Murphy B, Dunne T, et al. Redesign of polyene macro-lide glycosylation:Engineered biosynthesis of 19-(O)-perosaminyl am-photeronolide B[J]. Chemistry & Biology, 2010, 17(2):174-182.
[43] Reid R, Piagentini M, Rodriguez E, et al. A model of structure and ca-talysis for ketoreductase domains in modular polyketide synthases[J]. Biochemistry, 2003, 42(1):72-79.
[44] De-poire E, Stephens N, Caffrey P. Engineered biosynthesis of disac-charide-modified polyene macrolides[J]. Applied and Environmental Microbiology, 2013, 79(19):6156-6159.
[45] Walmsley S, Depoire E, Rawlings B, et al. Engineered biosynthesis and characterization of disaccharide-modified 8-deoxyamphoterono-lides[J]. Applied and Environmental Microbiology, 2017, 101(5):1899-1905.
[46] Cybulska B, Gadomska I, Mazerski J, et al. N-methyl-N-D-fructosyl amphotericin B methyl ester (MF-AME), a novel antifungal agent of low toxicity:Monomer/micelle control over selective toxicity[J]. Acta Biochimica Polonica, 2000, 47(1):121-131.
[47] Cobb R E, Wang Y, Zhao H. High-efficiency multiplex genome edit-ing of streptomyces species using an engineered CRISPR/Cas system[J]. Acs Synthetic Biology, 2015, 4(6):723-728.
[48] Tong Y, Charusanti P, Zhang L, et al. CRISPR-Cas9 based engineer-ing of actinomycetal genomes[J]. Acs Synthetic Biology, 2015, 4(9):1020-1029.
[49] Wang W, Yang T, Li Y, et al. Development of a synthetic oxytetracy-cline-inducible expression system for streptomycetes using de novo characterized genetic parts[J]. Acs Synthetic Biology, 2016, 5(7):765-773.
[50] Wang W, Li X, Wang J, et al. An engineered strong promoter for strep-tomycetes[J]. Applied and Environmental Microbiology, 2013, 79(14):4484-4492.
[51] Antillón A, de Vries A H, Espinosa-Caballero M, et al. An amphoteri-cin B derivative equally potent to amphotericin B and with increased safety[J]. Plos One, 2016, 11(9):e0162171.
[52] Benhar I, Osherov N, Dergachev V, et al. Amphotericin B derivatives:US 20170043029A1[P]. 2017-01-16. http://www.freepatentsonline.com/20170043029.pdf.
Outlines

/