Spescial Issues

Radar refined processing and its applications for low-observable moving target

  • CHEN Xiaolong ,
  • GUAN Jian ,
  • HUANG Yong ,
  • YU Xiaohan ,
  • LIU Ningbo ,
  • DONG Yunlong ,
  • HE You
Expand
  • 1. Department of Electronic and Information Engineering, Naval Aeronautical University, Yantai 264001, China;
    2. Institute of Information Fusion, Naval Aeronautical University, Yantai 264001, China

Received date: 2017-09-25

  Revised date: 2017-10-12

  Online published: 2017-10-31

Abstract

As the main equipment of target detection and surveillance, the radar plays an important role in the air and sea target monitoring, early warning detection and other public and defense security applications. Due to the complex detection environment and the variety of the targets, the echo has a low observability. It is dificult for the radar detection performance to meet the actual demand, and we face the weak target detection problem in a complex environment. In recent years, with the development of the radar system and the radar signal processing technology, the radar gains the ability to obtain fine target characteristics, and by extending the signal dimension, a new way is provided for the radar target detection and recognition. This paper reviews the connotation and the characteristics of the low observable moving target, the challenge of the radar detection and the key technology of fine processing, focusing on the engineering applications based on the measured data of the radar. Finally, the development direction of fine processing is discussed.

Cite this article

CHEN Xiaolong , GUAN Jian , HUANG Yong , YU Xiaohan , LIU Ningbo , DONG Yunlong , HE You . Radar refined processing and its applications for low-observable moving target[J]. Science & Technology Review, 2017 , 35(20) : 19 -27 . DOI: 10.3981/j.issn.1000-7857.2017.20.002

References

[1] 陈小龙, 关键, 黄勇, 等. 雷达低可观测目标探测技术[J]. 科技导报, 2017, 35(11):30-38. Chen Xiaolong, Guan Jian, Huang Yong, et al. Radar low-observable target detection[J]. Science & Technology Review, 2017, 35(11):30-38.
[2] 何友, 黄勇, 关键, 等. 海杂波中的雷达目标检测技术综述[J]. 现代雷达, 2014, 36(12):1-9. He You, Huang Yong, Guan Jian, et al. An overview on radar target de-tection in sea clutter[J]. Modern Radar, 2014, 36(12):1-9.
[3] 陈小龙, 关键, 何友. 微多普勒理论在海面目标检测中的应用及展望[J]. 雷达学报, 2013, 2(1):123-134. Chen Xiaolong, Guan jian, He You. Applications and prospect of micromotion theory in the detection of sea surface target[J]. Journal of Ra-dars, 2013, 2(1):123-134.
[4] 陈小龙, 关键, 何友, 等. 高分辨稀疏表示及其在雷达动目标检测中的应用[J]. 雷达学报, 2017, 6(3):239-251. Chen Xiaolong, Guan Jian, He You, et al. High-resolution sparse repre-sentation and its applications in radar moving target detection[J]. Jour-nal of Radars, 2017, 6(3):239-251.
[5] 许稼, 彭应宁, 夏香根, 等. 空时频检测前聚焦雷达信号处理方法[J]. 雷达学报, 2014, 3(2):129-141. Xu Jia, Peng Yingning, Xia Xianggen, et al. Radar signal processing method of space-time-frequency focus-before-detects[J]. Journal of Ra-dars, 2014, 3(2):129-141.
[6] 陈唯实, 李敬. 雷达探鸟技术发展与应用综述[J]. 现代雷达, 2017, 39(2):7-17. Chen Weishi, Li Jing. Review on development and applications of avian radar technology[J]. Modern Radar, 2017, 39(2):7-17.
[7] 罗宏伟. 试论大型活动安保工作中"低慢小" 目标的防范与处置[J]. 武警学院学报, 2015, 31(9):27-30. Luo Hongwei. Strengthening LSS target defense for large activities[J]. Journal Of Chinese People's Armed Police Force Academy, 2015, 31(9):27-30.
[8] Chen X L, Guan J, Bao Z, et al. Detection and extraction of target with micromotion in spiky sea clutter via short-time fractional fourier trans-form[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013, 52(2):1002-1018.
[9] Chen X L, Guan J, Liu N B, et al. Detection of a low observable seasurface target with micromotion via the radon-linear canonical transform[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(7):1225-1229.
[10] 徐文, 鄢社锋, 季飞, 等. 海洋信息获取、传输、处理及融合前沿研究评述[J]. 中国科学(信息科学), 2016, 46(8):1053-1085. Xu Wen, Yan Shefeng, Ji Fei, et al. Marine information gathering, transmission, processing, and fusion:Current status and future trends[J]. Scientia Sinica Informationis, 2016, 46(8):1053-1085.
[11] 陈小龙, 关键, 董云龙, 等. 稀疏域海杂波抑制与微动目标检测方法[J]. 电子学报, 2016, 44(4):860-867. Chen Xiaolong, Guan Jian, Dong Yunlong, et al. Sea clutter suppres-sion and micromotion target detection in sparse domain[J]. Chinese Journal of Electronics, 2016, 44(4):860-867.
[12] Lei Z, Ming L, Xiaowei Z, et al. An efficient method for detecting slow-moving weak targets in sea clutter based on time-frequency iter-ation decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6):3659-3672.
[13] Chen V C, Fayin L, Ho S S, et al. Micro-Doppler effect in radar:Phe-nomenon, model, and simulation study[J]. IEEE Transactions on Aero-space and Electronic Systems, 2006, 42(1):2-21.
[14] 庄钊文, 刘永祥, 黎湘. 目标微动特性研究进展[J]. 电子学报, 2007, 35(3):520-525. Zhuang Zhaowen, Liu Yongxiang, Li Xiang. The achievements of tar-get characteristic with micro-motion[J]. Chinese Journal of Electron-ics, 2007, 35(3):520-525.
[15] Luo Y, Zhang Q, Yuan N, et al. Three-dimensional precession feature extraction of space targets in distributed radar networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2):1313-1329.
[16] 李开明, 李长栋, 李松, 等. 基于Gabor变换的微动目标微多普勒分析与仿真[J]. 空军工程大学学报(自然科学版), 2010, 11(1):40-94. Li Kaiming, Li Changdong, Li Song, et al. Analysis and simulation for micro-Doppler information of micro-motion target based on Gabor transformation[J]. Journal of Air Force Engineering University (Natural Science Edition), 2010, 11(1):40-94.
[17] Wu X, Liu T. Spectral decomposition of seismic data with reassigned smoothed pseudo Wigner-Ville distribution[J]. Journal of Applied Geo-physics, 2009, 68(3):386-393.
[18] Chandra Sekhar S, Sreenivas T V. Effect of interpolation on PWVD computation and instantaneous frequency estimation[J]. Signal process-ing, 2004, 84(1):107-116.
[19] Wang Y, Jiang Y C. New time-frequency distribution based on the polynomial Wigner-Ville distribution and L class of Wigner-Ville dis-tribution[J]. IET Signal Processing, 2010, 4(2):130-136.
[20] 许世军, 罗迎, 陈天平. 低信噪比条件下雷达目标微多普勒信息提取[J]. 弹箭与制导学报, 2010, 30(3):148-150. Xu Shijun, Luo Ying, Chen Tianping. Extraction of micro-doppler in-formation with low signal-to-noise ratio[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2010, 30(3):148-150.
[21] Almeida L B. The fractional Fourier transform and time-frequency rep-resentations[J]. IEEE Transactions on Signal Processing, 1994, 42(11):3084-3091.
[22] 陶然, 邓兵, 王越. 分数阶傅里叶变换及其应用[M]. 北京:清华大学出版社, 2009. Tao Ran, Deng Bing, Wang Yue. The fractional Fourier transform and its application[M]. Beijing:Tsinghua University Press, 2009.
[23] Guan J, Chen X L, Huang Y, et al. Adaptive fractional Fourier trans-form-based detection algorithm for moving target in heavy sea clutter[J]. IET Radar, Sonar and Navigation, 2012, 6(5):389-401.
[24] 陈小龙, 关键, 黄勇, 等. 分数阶傅里叶变换在动目标检测和识别中的应用:回顾和展望[J]. 信号处理, 2013, 29(1):85-97. Chen Xiaolong, Guan Jian, Huang Yong, et al. Application of fraction-al Fourier transform in moving target detection and recognition:Devel-opment and prospect[J]. Journal of Signal Processing, 2013, 29(1):85-97.
[25] 陈小龙, 关键, 于仕财, 等. 海杂波背景下基于FRFT的多运动目标检测快速算法[J]. 信号处理, 2010, 26(8):1174-1180. Chen Xiaolong, Guan Jian, Yu Shicai, et al. A fast detection algorithm of multiple moving targets in sea clutter based on FRFT[J]. Journal of Signal Processing, 2010, 26(8):1174-1180.
[26] 陈小龙, 于仕财, 关键, 等. 海杂波背景下基于FRFT的自适应动目标检测方法[J]. 信号处理, 2010, 26(11):1614-1620. Chen Xiaolong, Yu Shicai, Guan Jian, et al. An adaptive detection al-gorithm for moving target at sea in FRFT domain[J]. Journal of Signal Processing, 2010, 26(8):1174-1180.
[27] Tao R, Li Y L, Wang Y. Short-time fractional Fourier transform and its applications[J]. IEEE Transactions on Signal Processing, 2010, 58(5):2568-2580.
[28] 陈小龙, 刘宁波, 王国庆, 等. 基于高斯短时分数阶傅里叶变换的海面微动目标检测方法[J]. 电子学报, 2014, 42(5):971-977. Chen Xiaolong, Liu Ningbo, Wang Guoqing, et al. Gaussian shorttime fractional Fourier transform based detection algorithm of target with micro-motion at sea[J]. Chinese Journal of Electronics, 2014, 42(5):971-977.
[29] Bai X R, Xing M D, Zhou F, et al. Imaging of micromotion targets with rotating parts based on empirical-mode decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11):3514-3523.
[30] Stankovic L, Thayaparan T, Dakovic M, et al. Micro-Doppler removal in the radar imaging analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2):1234-1250.
[31] Zhang Q, Yeo T S, Tan H S, et al. Imaging of a moving target with ro-tating parts based on the Hough transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1):291-299.
[32] 王俊, 张守宏. 微弱目标积累检测的包络移动补偿方法[J]. 电子学报, 2000, 28(12):56-59. Wang Jun, Zhang Shouhong. Study on the motion compensation of range migration for weak moving target detection[J]. Chinese Journal of Electronics, 2000, 28(12):56-59.
[33] 霍凯, 黎湘, 姜卫东, 等. 基于分段伪Keystone变换的快速旋转目标检测[J]. 电子学报, 2011, 39(9):2073-2079. Huo Kai, Li Xiang, Jiang Weidong, et al. Fast rotating target detection based on the segmental pseudo Keystone transform[J]. Chinese Journal of Electronics, 2011, 39(9):2073-2079.
[34] Xu J, Xia X G, Peng S B, et al. Radar maneuvering target motion esti-mation based on generalized Radon-Fourier transform[J]. IEEE Trans-actions on Signal Processing, 2012, 60(12):6190-6201.
[35] Yang L S, Zhang Z J, Guo F Y. Fast algorithm for Radon-ambiguity transform[J]. IET Radar, Sonar & Navigation, 2016, 10(3):553-559.
[36] 张天骐, 全盛荣, 强幸子, 等. 基于多尺度Chirplet稀疏分解和Wign-er-Ville变换的时频分析方法[J]. 电子与信息学报, 2017, 39(6):1333-1339. Zhang Tianqi, Quan Shengrong, Qiang Xingzi, et al. Time-frequency analysis method based on multi-scale Chirplet sparse decomposition and Wigner-Ville transform[J]. Journal of Electronics & Information Technology, 2017, 39(6):1333-1339.
[37] Su J, Tao H H, Xie J, et al. Imaging and Doppler parameter estima-tion for maneuvering target using axis mapping based coherently inte-grated cubic phase function[J]. Digital Signal Processing, 2017, 62:112-124.
[38] Chen X L, Guan J, Liu N B, et al. Maneuvering target detection via Radon-fractional Fourier transform-based long-time coherent integra-tion[J]. IEEE Transaction on Signal Processing, 2014, 62(4):939-953.
[39] Chen X L, Guan J, Liu N B, et al. Detection of a low observable seasurface target with micromotion via the Radon-linear canonical trans-form[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(7):1225-1229.
[40] Li X L, Cui G L, Yi W, et al. A fast maneuvering target motion param-eters estimation algorithm based on ACCF[J]. IEEE Signal Processing Letters, 2015, 22(3):265-269.
[41] Guan J, Liu N B, Huang Y, et al. Fractal poisson model for detecting target within spiky sea clutter[J]. IEEE Geoscience & Remote Sensing Letters, 2013, 10(2):411-415.
[42] Luo F, Zhang D T, Zhang B. The fractal properties of sea clutter and their applications in maritime target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6):1295-1299
[43] 关键, 刘宁波, 宋杰, 等. 分形理论在目标检测中应用[J]. 现代雷达, 2012, 34(2):12-18. Guan Jian, Liu Ningbo, Song Jie, et al. Application of target detection based on fractal theories[J]. Modern Radar, 2012, 34(2):12-18.
[44] 刘宁波, 关键, 王国庆, 等. 基于海杂波FRFT谱多尺度Hurst指数的目标检测方法[J]. 电子学报, 2013, 41(9):1847-1853. Liu Ningbo, Guan Jian, Wang Guoqing, et al. Target detection within sea clutter based on multi-scale hurst exponent in FRFT domain[J]. Chinese Journal of Electronics, 2013, 41(9):1847-1853.
[45] Chen X L, Guan J, He Y, et al. Detection of low observable moving target in sea clutter via fractal characteristics in FRFT domain[J]. IET Radar, Sonar and Navigation, 2013, 7(6):635-651.
[46] Donoho D L. Compressed sensing[J]. IEEE Transactions on Informa-tion Theory, 2006, 52(4):1289-1306.
[47] 李刚, 夏向根. 参数化稀疏表征在雷达探测中的应用[J]. 雷达学报, 2016, 5(1):1-7. Li Gang, Xia Xianggen. Parametric Sparse representation and its appli-cations to radar sensing[J]. Journal of Radars, 2016, 5(1):1-7.
[48] Gilbert A C, Indyk P, Iwen M, et al. Recent developments in the sparse Fourier transform:a compressed Fourier transform for big data[J]. IEEE Signal Processing Magazine, 2014, 31(5):91-100.
[49] 仲顺安, 王雄, 王卫江, 等. 稀疏傅里叶变换理论及研究进展[J]. 北京理工大学学报, 2017, 37(2):111-118. Zhong Shunan, Wang Xiong, Wang Weijiang, et al. Recent advances in the sparse Fourier transform[J]. Transactions of Beijing Institute of Technology, 2017, 37(2):111-118.
[50] 陈小龙, 于晓涵, 关键, 等. 基于短时稀疏时频分布的雷达目标微动特征提取及检测方法[J]. 电子与信息学报, 2017, 39(5):1017-1023. Chen Xiaolong, Guan Jian, Yu Xiaohan, et al. Radar micro-doppler signature extraction and detection via short-time sparse time-frequen-cy distribution. JEIT, 2017, 39(5):1017-1023.
[51] Chen X L, Guan J, He Y. High resolution extraction of radar microdoppler signature using sparse time-frequency distribution[C]. 32nd International Union of Radio Science General Assembly and Scientific Symposium (URSI 2017 GASS), Montréal, August 19-26, 2017.
[52] Chen X L, Yu X H, Guan J, et al. High-resolution sparse representa-tion of micro-doppler signal in sparse fractional domain[C]. The 2nd EAI International Conference on Machine Learning and Intelligent Communications (MLICOM 2017), Weihai, August 5-6, 2017.
[53] 何友, 王国宏, 陆大琻, 等. 多传感器信息融合及应用[J]. 北京:电子工业出版社, 2010. He You, Wang Guohong, Lu Dajin, et al. Multi sensor information fu-sion and its application[M]. Beijing:Publishing House of Electronics, 2010.
[54] 何友, 王国宏, 关欣, 等. 信息融合理论及应用[J]. 北京:电子工业出版社, 2010. He You, Wang Guohong, Guan Xin, et al. The information fusion theo-ry and application[M]. Beijing:Publishing House of Electronics, 2010.
[55] 余凯, 贾磊, 陈雨强, 等. 深度学习的昨天、今天和明天[J]. 计算机研究与发展, 2013, 50(9):1799-1804. Yu Kai, Jia Lei, Chen Yuqiang, et al. Deep learning:Yesterday, to-day, and tomorrow[J]. Journal of Computer Research and Develop-ment, 2013, 50(9):1799-1804.
[56] 周志文, 黄高明, 高俊, 等. 一种深度学习的雷达辐射源识别算法[J]. 西安电子科技大学学报, 2017, 44(3):77-82. Zhou Zhiwen, Huang Gaoming, Gao Jun, et al. Radar emitter identifi-cation algorithm based on deep learning[J]. Journal of Xidian Universi-ty, 2017, 44(3):77-82.
[57] 徐丰, 王海鹏, 金亚秋. 深度学习在SAR目标识别与地物分类中的应用[J]. 雷达学报, 2017, 6(2):136-148. Xu Feng, Wang Haipeng, Jin Yaqiu. Deep learning as applied in SAR target recognition and terrain classification[J]. Journal of Radars, 2017, 6(2):136-148.
[58] 杨建宇. 雷达技术发展规律和宏观趋势分析[J]. 雷达学报, 2012, 1(1):19-27. Yang Jianyu. Development laws and macro trends analysis of radar technology[J]. Journal of Radars, 2012, 1(1):19-27.
[59] 焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年:回顾与展望[J]. 计算机学报, 2016, 39(8):1697-1716. Jiao Licheng, Yang Shuyuan, Liu Fang, et al. Seventy years beyond neural networks:Retrospect and prospect[J]. Chinese Journal of Com-puters, 2016, 39(8):1697-1716.
Outlines

/