[1] Skolnik M I, Radar handbook[M]. 3rd Edition. New York:McGrawHill, 2008:1-24.
[2] Chen X L, Guan J, Bao Z, et al. Detection and extraction of target with micromotion in spiky sea clutter via short-time fractional Fourier trans-form[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2):1002-1018.
[3] Chen X L, Guan J, Li X Y, et al. Effective coherent integration method for marine target with micromotion via phase differentiation and radonLv's distribution[J]. IET Radar, Sonar & Navigation, 2015, 9(9):1284-1295.
[4] 陈小龙, 关键, 黄勇, 等. 雷达低可观测目标探测技术[J]. 科技导报, 2017, 35(11):30-38. Chen Xiaolong, Guan Jian, Huang Yong, et al. Radar low-observable target detection[J]. Science & Technology Review, 2017, 35(11):30-38.
[5] 陈小龙, 关键, 何友, 等. 高分辨稀疏表示及其在雷达动目标检测中的应用[J]. 雷达学报, 2017, 6(3):239-251. Chen Xiaolong, Guan Jian, He You, et al. High-resolution sparse repre-sentation and its applications in radar moving target detection[J]. Jour-nal of Radars, 2017, 6(3):239-251.
[6] Tavik G C, Hilterbrick C L, Evins J B, et al. The advanced multifunc-tion RF concept[J]. IEEE Transactions on Microwave Theory and Tech-niques, 2005, 53(3):1009-1020.
[7] Saddik G N, Singh R S, Brown E R. Ultra-wideband multifunctional communications/radar system[J]. IEEE Transactions on Microwave Theo-ry and Techniques, 2007, 55(7):1431-1437.
[8] Capmany J, Novak D. Microwave photonics combines two worlds[J]. Na-ture Photonics, 2007, 1(6):319-330.
[9] Yao J P. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3):314-335.
[10] Pan S L, Zhu D, Zhang F Z. Microwave photonics for modern radar systems[J]. Transactions of Nanjing University of Aeronautics and As-tronautics, 2014, 23(3):219-240.
[11] DARPA. Our research[EB/OL].[2017-06-30]. https://www.darpa.mil/our-research.
[12] Community Research and Development Information Service. Projects & results[EB/OL].[2017-06-30]. http://cordis.europa.eu/projects/home_en.html.
[13] NASA. Deep space network (DSN)[EB/OL].[2017-06-30]. https://www.nasa.gov/directorates/heo/scan/services/networks/txt_dsn.html.
[14] Goutzoulis A, Davies K, Zomp J, et al. Development and field demon-stration of a hardware-compressive fiber-optic true-time-delay steer-ing system for phased-array antennas[J]. Applied Optics, 1994, 33(35):8173-8185.
[15] Dolfi D, Joffre P, Antoine J, et al. Experimental demonstration of a phased-array antenna optically controlled with phase and time delays[J]. Applied Optics, 1996, 35(26):5293-5300.
[16] Ghelfi P, Laghezza F, Scotti F, et al. A fully photonics-based coherent radar system[J]. Nature, 2014, 507(7492):341.
[17] Ghelfi P, Laghezza F, Scotti F, et al. Photonics for radars operating on multiple coherent bands[J]. Journal of Lightwave Technology, 2016, 34(2):500-507.
[18] Melo S, Pinna S, Bogoni A, et al. Dual-use system combining simulta-neous active radar & communication, based on a single photonics-as-sisted transceiver[C]//17th IEEE International Radar Symposium (IRS). Piscataway, NJ:IEEE, 2016, doi:10.1109/IRS.2016.7497379.
[19] Onori D, Laghezza F, Scotti F, et al. Coherent radar/lidar integrated ar-chitecture[C]//IEEE European Radar Conference (EuRAD). Piscat-away, NJ:IEEE, 2015:241-244.
[20] KRET has created a sample of photonic radar for the aircraft of the 6th generation[EB/OL].[2017-06-30]. http://weaponews.com/news/11884-kret-has-created-a-sample-of-photonic-radar-for-the-aircraftof-the-6t.html
[21] Fu J, Pan S. Fiber-connected UWB sensor network for high-resolu-tion localization using optical time-division multiplexing[J]. Optics Ex-press, 2013, 21(18):21218-21223.
[22] Fu J, Zhang F, Zhu D, et al. A photonic-assisted transceiver with wavelength reuse for distributed UWB radar[C]//IEEE International Topical Meeting on Microwave Photonics (MWP) and the 9th Asia-Pa-cific Microwave Photonics Conference (APMP). Piscataway, NJ:IEEE, 2014:232-234.
[23] Fu J B, Pan S L. UWB-over-fiber sensor network for accurate localiza-tion based on optical time-division multiplexing[C]//The 12th IEEE In-ternational Conference on Optical Communications and Networks (ICOCN). Piscataway, NJ:IEEE, 2013, doi:10.1109/ICOCN.2013.6617197.
[24] Zheng J, Wang H, Fu J, et al. Fiber-distributed ultra-wideband noise radar with steerable power spectrum and colorless base station[J]. Op-tics Express, 2014, 22(5):4896-4907.
[25] Yao T, Zhu D, Ben D, et al. Distributed MIMO chaotic radar based on wavelength-division multiplexing technology[J]. Optics Letters, 2015, 40(8):1631-1634.
[26] Yao T, Zhu D, Liu S, et al. Wavelength-division multiplexed fiberconnected sensor network for SLource localization[J]. IEEE Photonics Technology Letters, 2014, 26(18):1874-1877.
[27] Zhang F, Guo Q, Wang Z, et al. Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging[J]. Optics Express, 2017, 25(14):16274-16281.
[28] Li R, Li W, Ding M, et al. Demonstration of a microwave photonic syn-thetic aperture radar based on photonic-assisted signal generation and stretch processing[J]. Optics Express, 2017, 25(13):14334-14340.
[29] Xiao X, Li S, Chen B, et al. A microwave photonics-based inverse synthetic aperture radar system[C]//CLEO:Science and Innovations. New York:Optical Society of America, 2017:JW2A. 144.
[30] Zou W W, Zhang S T, Wu K, et al. All-optical central-frequency-pro-grammable and bandwidth-tailorable radar[C]//URSI Asia-Pacific Ra-dio Science Conference. Piscataway, NJ:IEEE, 2016, doi:10.1109/UR-SIAP-RASC.2016.7883546.
[31] Yao X S, Maleki L. Converting light into spectrally pure microwave os-cillation[J]. Optics Letters, 1996, 21(7):483-485.
[32] Bagnell M, Davila-Rodriguez J, Delfyett P J. Millimeter-wave genera-tion in an optoelectronic oscillator using an ultrahigh finesse etalon as a photonic filter[J]. Journal of Lightwave Technology, 2014, 32(6):1063-1067.
[33] Peng H, Zhang C, Xie X, et al. Tunable DC-60 GHz RF generation utilizing a dual-loop optoelectronic oscillator based on stimulated Bril-louin scattering[J]. Journal of Lightwave Technology, 2015, 33(13):2707-2715.
[34] Pan S, Yao J. A frequency-doubling optoelectronic oscillator using a polarization modulator[J]. IEEE Photonics Technology Letters, 2009, 21(13):929-931.
[35] Zhu D, Pan S, Ben D. Tunable frequency-quadrupling dual-loop opto-electronic oscillator[J]. IEEE Photonics Technology Letters, 2012, 24(3):194-196.
[36] Zhu D, Liu S, Ben D, et al. Frequency-quadrupling optoelectronic os-cillator for multichannel upconversion[J]. IEEE Photonics Technology Letters, 2013, 25(5):426-429.
[37] Devgan P S, Urick V J, Diehl J F, et al. Improvement in the phase noise of a 10 GHz optoelectronic oscillator using all-photonic gain[J]. Journal of Lightwave Technology, 2009, 27(15):3189-3193.
[38] Yao X S, Maleki L. Multiloop optoelectronic oscillator[J]. IEEE Jour-nal of Quantum Electronics, 2000, 36(1):79-84.
[39] Cai S, Pan S, Zhu D, et al. Coupled frequency-doubling optoelectron-ic oscillator based on polarization modulation and polarization multi-plexing[J]. Optics Communications, 2012, 285(6):1140-1143.
[40] Yang B, Jin X, Zhang X, et al. A wideband frequency-tunable opto-electronic oscillator based on a narrowband phase-shifted FBG and wavelength tuning of laser[J]. IEEE Photonics Technology Letters, 2012, 24(1):73-75.
[41] Ozdur I, Mandridis D, Hoghooghi N, et al. Low noise optically tunable opto-electronic oscillator with Fabry-Perot etalon[J]. Journal of Light-wave Technology, 2010, 28(21):3100-3106.
[42] Maleki L. Sources:The optoelectronic oscillator[J]. Nature Photonics, 2011, 5(12):728-730.
[43] Yao X S, Davis L, Maleki L. Coupled optoelectronic oscillators for gen-erating both RF signal and optical pulses[J]. Journal of Lightwave Technology, 2000, 18(1):73-78.
[44] Zhou W, Blasche G. Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(3):929-933.
[45] OEwave Corporation[EB/OL].[2017-06-30]. http://www.oewaves.com.
[46] Eliyahu D, Sariri K, Taylor J, et al. Optoelectronic oscillator with im-proved phase noise and frequency stability[C]//Proceedings of SPIE:Photonic Integrated Systems. New York:SPIE, 2003, doi:10.1117/12.475834.
[47] Lou C, Huo L, Chang G, et al. Experimental study of clock division us-ing the optoelectronic oscillator[J]. IEEE Photonics Technology Let-ters, 2002, 14(8):1178-1180.
[48] Yang J, Yu J L, Wang Y T, et al. An optical domain combined dualloop optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 2007, 19(11):807-809.
[49] Rashidinejad A, Weiner A M. Photonic radio-frequency arbitrary waveform generation with maximal time-bandwidth product capability[J]. Journal of Lightwave Technology, 2014, 32(20):3383-3393.
[50] Wang C, Yao J. Photonic generation of chirped millimeter-wave puls-es based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating[J]. IEEE Transactions on Microwave Theo-ry and Techniques, 2008, 56(2):542-553.
[51] Ye J, Yan L, Pan W, et al. Two-dimensionally tunable microwave sig-nal generation based on optical frequency-to-time conversion[J]. Op-tics letters, 2010, 35(15):2606-2608.
[52] Zhang F, Ge X, Pan S. Background-free pulsed microwave signal gen-eration based on spectral shaping and frequency-to-time mapping[J]. Photonics Research, 2014, 2(4):B5-B10.
[53] Simpson T B, Liu J M, Huang K F, et al. Nonlinear dynamics induced by external optical injection in semiconductor lasers[J]. Quantum and Semiclassical Optics:Journal of the European Optical Society Part B, 1997, 9(5):765.
[54] Zhou P, Zhang F, Guo Q, et al. Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser[J]. Optics Express, 2016, 24(16):18460-18467.
[55] Zhou P, Zhang F, Ye X, et al. Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser[J]. IEEE Photonics Journal, 2016, 8(6):1-9.
[56] Zhou P, Zhang F, Guo Q, et al. Reconfigurable radar waveform genera-tion based on an optically injected semiconductor laser[J]. IEEE Jour-nal of Selected Topics in Quantum Electronics, 2017, 23(6), doi:10.1109/JSTQE.2017.2699259.
[57] Li W, Wang W T, Sun W H, et al. Photonic generation of arbitrarily phase-modulated microwave signals based on a single DDMZM[J]. Op-tics Express, 2014, 22(7):7446-7457.
[58] Jiang H Y, Yan L S, Ye J, et al. Photonic generation of phase-coded microwave signals with tunable carrier frequency[J]. Optics Letters, 2013, 38(8):1361-1363.
[59] Li W, Kong F, Yao J. Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator[J]. Journal of Lightwave Technol-ogy, 2013, 31(23):3780-3786.
[60] Zhang Y, Pan S. Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter[J]. Optics Letters, 2013, 38(5):766-768.
[61] Zhang Y, Zhang F, Pan S. Generation of frequency-multiplied and phase-coded signal using an optical polarization division multiplexing modulator[J]. IEEE Transactions on Microwave Theory and Tech-niques, 2017, 65(2):651-660.
[62] Zhang Y, Ye X, Guo Q, et al. Photonic generation of linear-frequencymodulated waveforms with improved time-bandwidth product based on polarization modulation[J]. Journal of Lightwave Technology, 2017, 35(10):1821-1829.
[63] Kanno A, Kawanishi T. Broadband frequency-modulated continuouswave signal generation by optical modulation technique[J]. Journal of Lightwave Technology, 2014, 32(20):3566-3572.
[64] Guo Q, Zhang F, Zhou P, et al. Dual-band LFM signal generation by optical frequency quadrupling and polarization multiplexing[J]. IEEE Photonics Technology Letters, 2017, 29(16):1320-1323.
[65] Yacoubian A, Das P K. Digital-to-analog conversion using electroop-tic modulators[J]. IEEE Photonics Technology Letters, 2003, 15(1):117-119.
[66] Saida T, Okamoto K, Uchiyama K, et al. Integrated optical digital-toanalogue converter and its application to pulse pattern recognition[J]. Electronics Letters, 2001, 37(20):1237-1238.
[67] Liao J, Wen H, Zheng X, et al. Novel bipolar photonic digital-to-ana-log conversion employing differential phase shift keying modulation and balanced detection[J]. IEEE Photonics Technology Letters, 2013, 25(2):126-128.
[68] Gao B, Zhang F, Pan S. Experimental demonstration of arbitrary wave-form generation by a 4-bit photonic digital-to-analog converter[J]. Op-tics Communications, 2017, 383:191-196.
[69] Zou X, Pan W, Luo B, et al. Photonic approach for multiple-frequen-cy-component measurement using spectrally sliced incoherent source[J]. Optics Letters, 2010, 35(3):438-440.
[70] Wang W, Davis R L, Jung T J, et al. Characterization of a coherent op-tical RF channelizer based on a diffraction grating[J]. IEEE Transac-tions on Microwave Theory and Techniques, 2001, 49(10):1996-2001.
[71] Gu X, Zhu D, Li S, et al. Photonic RF channelization based on seriescoupled asymmetric double-ring resonator filter[C]//The 7th IEEE In-ternational Conference on Advanced Infocomm Technology (ICAIT). Piscataway, NJ:IEEE, 2014:240-244.
[72] Austin M W. Integrated optical microwave channeliser[C]//The IEEE Asia Communications and Photonics Conference and Exhibition (ACP). Piscataway, NJ:IEEE, 2009, doi:10.1364/ACP.2009.ThE5.
[73] Xie X, Dai Y, Xu K, et al. Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators[J]. IEEE Photonics Journal, 2012, 4(4):1196-1202.
[74] Tang Z Z, Zhu D, Pan S L. Coherent RF channelizer based on dual op-tical frequency combs and image-reject mixers[C]. International Topi-cal Meeting on Microwave Photonics (MWP 2017), Beijing, October 23-26, 2017.
[75] Zhu D, Chen W J, Chen Z W, et al. RF front-end based on micro-wave photonics[C]. The 12th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), the 22nd OptoElectronics and Communica-tions Conference (OECC), and the 5th Photonics Global Conference (PGC), Singapore, July 31-August 4, 2017.
[76] Yi X, Huang T X H, Minasian R. Photonic beamforming based on pro-grammable phase shifters with amplitude and phase control[J]. IEEE Photonics Technology Letters, 2011, 23(18):1286-1288.
[77] Zhang Y, Wu H, Zhu D, et al. An optically controlled phased array an-tenna based on single sideband polarization modulation[J]. Optics Ex-press, 2014, 22(4):3761-3765.
[78] 张光义. 相控阵雷达瞬时带宽的几个问题[J]. 现代雷达, 1990, 12(4):1-10. Zhang Guangyi. Several problems of phased array radar instantaneous bandwidth[J]. Modern Radar, 1990, 12(4):1-10.
[79] Dolfi D, Joffre P, Antoine J, et al. Experimental demonstration of a phased-array antenna optically controlled with phase and time delays[J]. Applied Optics, 1996, 35(26):5293-5300.
[80] Yi X, Li L, Huang T X H, et al. Programmable multiple true-time-de-lay elements based on a Fourier-domain optical processor[J]. Optics Letters, 2012, 37(4):608-610.
[81] Aryanfar I, Marpaung D, Choudhary A, et al. Chip-based Brillouin ra-dio frequency photonic phase shifter and wideband time delay[J]. Op-tics Letters, 2017, 42(7):1313-1316.
[82] Zhuang L, Marpaung D, Burla M, et al. Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave pho-tonics signal processing[J]. Optics Express, 2011, 19(23):23162-23170.
[83] Song Y, Li S, Zheng X, et al. True time-delay line with high resolu-tion and wide range employing dispersion and optical spectrum pro-cessing[J]. Optics Letters, 2013, 38(17):3245-3248.
[84] Ye X, Zhang F, Pan S. Optical true time delay unit for multi-beam-forming[J]. Optics Express, 2015, 23(8):10002-10008.
[85] Subbaraman H, Chen M Y, Chen R T. Photonic crystal fiber-based true-time-delay beamformer for multiple RF beam transmission and reception of an X-band phased-array antenna[J]. Journal of Lightwave Technology, 2008, 26(15):2803-2809.
[86] Ye X, Zhang F, Pan S. Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements[J]. Optics Letters, 2016, 41(17):3956-3959.
[87] Ye X, Zhang B, Zhang Y, et al. Performance evaluation of optical beamforming-based wideband antenna array[J]. Chinese Optics Let-ters, 2017, 15(1):010013.
[88] Fard A M, Gupta S, Jalali B. Photonic time-stretch digitizer and its ex-tension to real-time spectroscopy and imaging[J]. Laser & Photonics Reviews, 2013, 7(2):207-263.
[89] Ye X, Zhang F, Pan S. Photonic time-stretched analog-to-digital con-verter with suppression of dispersion-induced power fading based on polarization modulation[C]//IEEE Photonics Conference (IPC). Piscat-away, NJ:IEEE, 2014:218-219.
[90] Johnstone A, Lewis M F, Hares J D, et al. High-speed optp-electron-ic transient waveform digitiser[J]. Computer Standards & Interfaces, 2001, 23(2):73-84.
[91] Zhang X, Kang Z, Yuan J, et al. Scheme for multicast parametric syn-chronous optical sampling[J]. Optical Engineering, 2014, 53(5):056102-056102.
[92] Zhu X, Zhu D, Pan S L. A photonic analog-to-digital converter with multiplied sampling rate using a fiber ring[C]. International Topical Meeting on Microwave Photonics (MWP 2017), Beijing, China, Octo-ber 23-26, 2017.
[93] Khilo A, Spector S J, Grein M E, et al. Photonic ADC:Overcoming the bottleneck of electronic jitter[J]. Optics Express, 2012, 20(4):4454-4469.
[94] Taylor H F. An electrooptic analog-to-digital converter[J]. Proceed-ings of the IEEE, 1975, 63(10):1524-1525.
[95] Wu Q, Zhang H, Peng Y, et al. 40 GS/s optical analog-to-digital con-version system and its improvement[J]. Optics Express, 2009, 17(11):9252-9257.
[96] Wang Y, Zhang H M, Wu Q W, et al. Improvement of photonic ADC based on phase-shifted optical quantization by using additional modu-lators[J]. IEEE Photonics Technology Letters, 2012, 24(7):566-568.
[97] Konishi T, Tanimura K, Asano K, et al. All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shap-ing technique[J]. Optical Society of America Journal B, 2002, 19(11):2817-2823.
[98] Nagashima T, Hasegawa M, Konishi T. 40 G sample/s all-optical ana-log to digital conversion with resolution degradation prevention[J]. IEEE Photonics Technology Letters, 2017, 29(1):74-77.
[99] Takahashi K, Matsui H, Nagashima T, et al. Resolution upgrade to-ward 6-bit optical quantization using power-to-wavelength conversion for photonic analog-to-digital conversion[J]. Optics Letters, 2013, 38(22):4864-4867.