Spescial Issues

A review of ship detection and recognition based on optical remote sensing image

  • CHEN Liang ,
  • WANG Zhiru ,
  • HAN Zhong ,
  • WANG Guanqun ,
  • ZHOU Haotian ,
  • SHI Hao ,
  • HU Cheng ,
  • LONG Teng
  • 1. Beijing Key Laboratory of Embedded Real-time Information Processing Technology;Lab of Radar Research, Schoool of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China;
    2. Department of Electronics, Tsinghua University, Beijing 100084, China

Received date: 2017-09-25

  Revised date: 2017-10-10

  Online published: 2017-10-31


Ship detection based on optical remote sense images is an important application direction in the marine information perception. Its primary tasks include the fast detection of ship targets in a large view field and the further extraction and classification of the targets based on the ship detection. It is of great significance both in civilian and military applications. This paper reviews the main achievements in that field, focusing on the difficulties involved. Finally, the existing problems and the future development are discussed.

Cite this article

CHEN Liang , WANG Zhiru , HAN Zhong , WANG Guanqun , ZHOU Haotian , SHI Hao , HU Cheng , LONG Teng . A review of ship detection and recognition based on optical remote sensing image[J]. Science & Technology Review, 2017 , 35(20) : 77 -85 . DOI: 10.3981/j.issn.1000-7857.2017.20.008


[1] 许军毅. 光学卫星遥感图像船只目标检测技术研究[D]. 长沙:国防科学技术大学, 2011. Xu Junyi. Remote sensing image ship target detection technology[D]. Changsha:National Defense Science and Technology University, 2011.
[2] 曾湧, 王文宇, 王静巧. 基于实验室定标和均匀景统计的相对辐射定标方法[J]. 航天返回与遥感, 2012, 33(4):19-24. Zeng Yong, Wang Wenyu, Wang Jingqiao. Study on relative radiation calibration method based on laboratory calibration and uniform king sta-tistic[J]. Space Return and Remote Sensing, 2012, 33(4):19-24.
[3] Jung H S, Won J S, Kang M H, et al. Detection and restoration of defec-tive lines in the SPOT 4 SWIR band[J]. IEEE Transactions on Image Processing, 2010, 19(8):2143-2156.
[4] He K, Sun J, Tang X. Single image haze removal using dark channel prior[J]. IEEE transactions on pattern analysis and machine intelli-gence, 2011, 33(12):2341-2353.
[5] 师皓, 陈禾, 毕福昆, 等. 基于特征位置优选整合的快速城区检测算法[J]. 电子学报, 2015, 43(7):1369-1374. Shi Hao, Chen He, Bi Fukun, et al. Fast urban detection algorithm based on feature location optimization[J]. Journal of Electronics, 2015, 43(7):1369-1374.
[6] 王睿. 光学遥感图像厚云检测与去除方法研究[D]. 桂林:桂林理工大学, 2015. Wang Rui. Optical remote sensing image thick cloud detection and re-moval method[D]. Guilin:Guilin University of Science and Technology, 2015.
[7] Ma L, Soomro N Q, Shen J, et al. Hierarchical sea-land segmentation for panchromatic remote sensing imagery[J]. Mathematical Problems in Engineering, 2017, doi:10.1155/2017/4728425.
[8] Cheng L, Shou H, Li H. A water/land segmentation algorithm based on an improved Chan-Vese model with edge constraints of complex wave-let domain[J]. Chinese Journal of Electronics, 2015, 24(2):361-365.
[9] Aktaş Ü R, Can G, Vural F T Y. Edge-aware segmentation in satellite imagery:A case study of shoreline detection[C]//Pattern Recognition in Remote Sensing. Piscataway, NJ:IEEE, 2012:1-4.
[10] 胡倩, 张丰, 刘仁义, 等. 基于梯度矢量流和主动轮廓模型的海陆边界提取[J]. 浙江大学学报(理学版), 2013, 40(6):698-704. Hu Qian, Zhang Feng, Liu Renyi, et al. Extraction of sea and land boundary based on gradient vector flow and active contour model[J]. Journal of Zhejiang University(Science Edition), 2013, 40(6):698-704.
[11] Lü W T, Yu Q Z, Yu W X. Water extraction in SAR images using GL-CM and support vector machine[C]//International Conference on Sig-nal Processing. Piscataway, NJ:IEEE, 2010:740-743.
[12] Xia Y, Wan S, Jin P, et al. A novel sea-land segmentation algorithm based on local binary patterns for ship detection[J]. International Jour-nal of Signal Processing Image Processing and Pattern Recognition, 2014, 7(3):237-246.
[13] Yang G, Li B, Ji S, et al. Ship detection from optical satellite images based on sea surface analysis[J]. IEEE Geoscience & Remote Sensing Letters, 2013, 11(3):641-645.
[14] 安彧, 王小非, 夏学知, 等. 海战场光学遥感图像船只目标检测[J]. 武汉大学学报(工学版), 2015, 48(4):568-573. An Yu, Wang Xiaofei, Xia Xuezhi, et al. Sea battlefield optical re-mote sensing image ship target detection[J]. Journal of Wuhan Univer-sity (Engineering Science), 2015, 48(4):568-573.
[15] 赵春晖, 栾世杰. 相位谱的光学遥感图像船只目标检测[J]. 沈阳大学学报(自然科学版), 2015, 27(5):369-375. Zhao Chunhui, Luan Shijie. Phase spectrum of the optical remote sens-ing image ship target detection[J]. Journal of Shenyang University (Natural Science Edition), 2015, 27(5):369-375.
[16] 张雷, 甘春生, 胡宇. 高分辨率光学遥感影像船只检测算法研究[J]. 计算机工程与应用, 2017, 53(9):184-189. Zhang Lei, Gan Chunsheng, Hu Yu. Study on ship detection algorithm for high resolution optical remote sensing images[J]. Computer Engi-neering and Applications, 2017, 53(9):184-189.
[17] Ma L, Du B, Chen H, et al. Region-of-interest detection via superpix-el-to-pixel saliency analysis for remote sensing image[J]. IEEE Geo-science & Remote Sensing Letters, 2016, 13(12):1752-1756.
[18] Yang G, Li B, Ji S, et al. Ship detection from optical satellite images based on sea surface analysis[J]. IEEE Geoscience & Remote Sensing Letters, 2013, 11(3):641-645.
[19] Zhu C, Zhou H, Wang R, et al. A Novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features[J]. IEEE Transactions on Geoscience & Remote Sensing, 2010, 48(9):3446-3456.
[20] 周伟, 关键, 何友. 光学遥感图像低可观测区域船只检测[J]. 中国图象图形学报, 2012, 17(9):1181-1187. Zhou Wei, Guan Jian, He You. Optical remote sensing image low ob-servable area ship detection[J]. Chinese Journal of Image and Graph-ics, 2012, 17(9):1181-1187.
[21] 张素霞, 李元祥, 周则明, 等. 光学遥感影像船只型号识别[J]. 上海交通大学学报, 2016, 50(9):1415-1421. Zhang Suxia, Li Yuanxiang, Zhou Zeming, et al. Optical remote sens-ing image ship model identification[J]. Journal of Shanghai Jiao Tong University, 2016, 50(9):1415-1421.
[22] Qi S, Ma J, Lin J, et al. Unsupervised ship detection based on salien-cy and S-HOG descriptor from optical satellite images[J]. IEEE Geo-science & Remote Sensing Letters, 2015, 12(7):1451-1455.
[23] 翟玉婷, 郑智林, 苑志江. 船只分类的PHOG和支持向量机联合检测方法[J]. 计算机仿真, 2017, 34(6):431-434. Zhai Yuting, Zheng Zhilin, Yuan Zhijiang. Ship classification of PHOG and support vec tor machine joint detection method[J]. Com-puter simulation, 2017, 34(6):431-434.
[24] Wang Q J, Gao X, Chen D Q. Pattern recognition for ship based on bayesian networks[C]//International Conference on Fuzzy Systems and Knowledge Discovery. Washington, DC:IEEE Computer Society, 2007:684-688.
[25] Wang H L, Zhu M, Lin C B, et al. Ship detection in optical remote sensing image based on visual saliency and AdaBoost classifier[J]. Op-toelectronics Letters, 2017, 13(2):151-155.
[26] Yokoya N, Iwasaki A. Object localization based on sparse representa-tion for remote sensing imagery[C]//Geoscience and Remote Sensing Symposium. Piscataway, NJ:IEEE, 2014:2293-2296.
[27] Bi F, Chen J, Zhuang Y, et al. A decision mixture model-based meth-od for inshore ship detection using high-resolution remote sensing im-ages[J]. Sensors, 2017, 17(7):1470.
[28] Li Z, Yang D, Chen Z. Multi-layer sparse coding based ship detection for remote sensing images[C]//IEEE International Conference on Infor-mation Reuse and Integration. Piscataway, NJ:IEEE, 2015:122-125.
[29] Zhou H, Zhuang Y, Chen L, et al. Ship detection in optical satellite images based on sparse representation[C]//The Third International Con-ference on Signal and Information Processing, Networking and Comput-ers. Piscataway, NJ:IEEE, 2017, in press.
[30] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Confer-ence on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2014:580-587.
[31] Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time ob-ject detection with region proposal networks[C]//International Confer-ence on Neural Information Processing Systems. Cambridge MA:MIT Press, 2015:91-99.
[32] Redmon J, Divvala S, Girshick R, et al. You only look once:unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2015:779-788.
[33] Liu W, Anguelov D, Erhan D, et al. SSD:Single shot multibox detector[J/OL].[2017-08-31]. https://www.cv-foundation.org/openaccess/con-tent_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf.
[34] Dai J, Li Y, He K, et al. R-FCN:Object detection via region-based fully convolutional networks[J/OL].[2017-08-31]. http://papers.nips.cc/paper/6465-r-fcn-object-detection-via-region-based-fully-convo-lutional-networks.pdf.
[35] Lin H N, Shi Z W, Zou Z X. Fully convolutional network with task partitioning for inshore ship detection in optical remote sensing images[J]. IEEE Geoscience & Remote Sensing Letters, 2017, 14(10):1665-1669.
[36] Zou Z, Shi Z. Ship detection in spaceborne optical image with SVD networks[J]. IEEE Transactions on Geoscience & Remote Sensing,2016, 54(10):5832-5845.
[37] Yao Y, Jiang Z G, Zhang H P, et al. Ship detection in optical remote sending images based on deep convolutional netural networks[J].[Jour-nal of Applied Remote Sensing, 2017, 11(4):042611.
[38] Liu Z K, Hu J G, Weng L B, et al. Rotated region based CNN for ship detection[C]. 2017 IEEE International Conference on Image Process-ing. Piscataway, NJ:IEEE, 2017.
[39] Zhang R, Yao J, Zhang K, et al. S-CNN-based ship detection from high-resolution remote sensingimages[J]. ISPRS-International Ar-chives of the Photogrammetry, Remote Sensing and Spatial Informa-tion Sciences, 2016, XLI-B7:423-430.
[40] Liu Y, Cui H Y, Kuang Z, et al. Ship detection and classification on optical remote sensing images using deep learning[J]. ITM Web of Conferences, 2017(12):05012.
[41] Tang J, Deng C, Huang G B, et al. Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 53(3):1174-1185.
[42] Zhang L, Zhang L, Du B. Deep learning for remote sensing data:A technical tutorial on the state of the art[J]. IEEE Geoscience & Re-mote Sensing Magazine, 2016, 4(2):22-40.
[43] Cheng G, Zhou P, Han J. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2016, 54(12):7405-7415.
[44] Chen X L, Guan J, Bao Z H, et al. Detection and extraction of target with micro-motion in spiky sea clutter via short-time fractional Fouri-er transform[J]. IEEE Transactions on Geoscience and Remote Sens-ing, 2014, 52(2):1002-1018.
[45] Chen X L, Guan J, Li X Y, et al. Effective coherent integration meth-od for marine target with micromotion via phase differentiation and ra-don-Lv's distribution[J]. IET Radar, Sonar and Navigation (Special Is-sue:Micro-Doppler), 2015, 9(9):1284-1295.
[46] 陈小龙, 关键, 何友. 微多普勒理论在海面目标检测中的应用及展望[J]. 雷达学报, 2013, 2(1):123-134. Chen Xiaolong,Guan Jian, He You. Application and prospect of micro doppler theory in sea surface target detection[J]. Journal of Radar Sci-ence, 2013, 2(1):123-134.