Spescial Issues

Ship geometric parameter extraction for Sentinel-1 dual-polarization products

  • LI Boying ,
  • LIU Bin ,
  • GUO Weiwei ,
  • ZHANG Zenghui ,
  • YU Wenxian
  • Shanghai Key Laboratory of Intelligent Sensing and Recognition, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2017-09-25

  Revised date: 2017-10-10

  Online published: 2017-10-31


The ship geometric parameter extraction is an essential basis for the marine target detection and classification for the Synthetic Aperture Radar(SAR) images. With the assistance of the ground true value sample of the marine target size, the improvement of the geometric dimension extraction can be achieved by the parameter optimization and regression, as verified in TerraSAR-X datasets. Taking into consideration of the typical characteristics of the dual-polarization for the sentinel-1 products, this paper explores the usefulness of the dual-polarization fusion information. Based on the OpenSARShip, firstly we utilize a two-dimensional filter method for image processing. The parameters in the image processing are optimized by a cross-entropy method based on the large dataset. Next, with the preliminary extraction results, we combine the information from the sensors, the environment and the target, and especially the information from the dual-polarization. We employ a multiple linear regression model to obtain the precise physical dimensions. The size extraction performance by the dual-polarization fusion information is much better than merely using the single-polarization information, which proves the usefulness of the dual polarization information.

Cite this article

LI Boying , LIU Bin , GUO Weiwei , ZHANG Zenghui , YU Wenxian . Ship geometric parameter extraction for Sentinel-1 dual-polarization products[J]. Science & Technology Review, 2017 , 35(20) : 94 -101 . DOI: 10.3981/j.issn.1000-7857.2017.20.010


[1] Torres R, Snoeij P, Geudtner D, et al. GMES Sentinel-1 mission[J]. Re-mote Sensing of Environment, 2012, 120:9-24.
[2] Malenovsky Z, Rott H, Cihlar J, et al. Sentinels for science:Potential of Sentinel-1,-2, and-3 missions for scientific observations of ocean, cryo-sphere, and land[J]. Remote Sensing of Environment, 2012, 120:91-101.
[3] Imperatore P, Azar R, Calò F, et al. Effect of the vegetation fire on backscattering:An investigation based on Sentinel-1 observations[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Re-mote Sensing, 2017, 10(10):4478-4492.
[4] Mouginot J, Rignot E, Scheuchl B, et al. Comprehensive annual ice sheet velocity mapping using Landsat-8, Sentinel-1, and RADARSAT-2 Data[J]. Remote Sensing, 2017, 9(4):364.
[5] Hornacek M, Wagner W, Sabel D, et al. Potential for high resolution systematic global surface soil moisture retrieval via change detection us-ing Sentinel-1[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(4):1303-1311.
[6] Lohberger S, Stangel M, Atwood E C, et al. Spatial evaluation of Indone-sia's 2015 fire-affected area and estimated carbon emissions using Sentinel-1[J]. Global Change Biology, 2017, doi:10.1111/gcb.13841.
[7] Delgado-Aguilar M J, Fassnacht F E, Peralvo M, et al. Potential of Ter-raSAR-X and Sentinel 1 imagery to map deforested areas and derive degradation status in complex rain forests of Ecuador[J]. International Forestry Review, 2017, 19(1):102-118.
[8] Margarit M G. Marine applications of SAR polarimetry[M]. Barcelona:Universitat Politècnica de Catalunya, 2007.
[9] Messina M, Greco M, Fabbrini L, et al. Modified Otsu's algorithm:A new computationally efficient ship detection algorithm for SAR images[C]//2012 Tyrrhenian Workshop on Advances in Radar and Remote Sensing (TyWRRS). Piscataway, NJ:IEEE, 2012:262-266.
[10] Chen X, Guan J, Bao Z, et al. Detection and extraction of target with micromotion in spiky sea clutter via short-time fractional Fourier transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2):1002-1018.
[11] 陈小龙, 关键, 何友. 微多普勒理论在海面目标检测中的应用及展望[J]. 雷达学报, 2013, 2(1):123-134. Chen Xiaolong, Guan Jian, He You, et al. Applications and prospect of micro-motion theory in the detection of sea surface target[J]. Jour-nal of Radars, 2013, 2(1):123-134.
[12] 陈小龙, 关键, 黄勇, 等. 雷达低可观测目标探测技术[J]. 科技导报, 2017, 35(11):30-38. Chen Xiaolong, Guan Jian, Huang Yong, et al. Radar low-observable target detection[J]. Science & Technology Review, 2017, 35(11):30-38.
[13] Stasolla M, Mallorqui J J, Margarit G, et al. A comparative study of op-erational vessel detectors for maritime surveillance using satelliteborne synthetic aperture radar[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(6):2687-2701.
[14] Tings B, Bentes da Silva C A, Lehner S. Dynamically adapted ship pa-rameter estimation using TerraSAR-X images[J]. International Journal of Remote Sensing, 2016, 37(9):1990-2015.
[15] Stasolla M, Greidanus H. The exploitation of Sentinel-1 images for vessel size estimation[J]. Remote Sensing Letters, 2016, 7(12):1219-1228.
[16] Sciotti M, Pastina D, Lombardo P. Polarimetric detectors of extended targets for ship detection in SAR images[C]//2001 IEEE International Geoscience and Remote Sensing Symposium(IGARSS). Piscataway, NJ:IEEE, 2001, 7:3132-3134.
[17] Novak L M, Burl M C. Studies of target detection algorithms that use Polarimetric radar data[J]. IEEE Transactions on Aerospace and Electronic Systems, 1989, 25(2):150-165.
[18] Novak L M, Burl M C. Optimal speckle reduction in POL-SAR imag-ery and its effect on target detection[C]//1989 Orlando Symposium. Or-lando:International Society for Optics and Photonics. New York:SPIE, 1989:84-115.
[19] Cloude S R, Pottier E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2):498-518.
[20] Sugimoto M, Ouchi K, Nakamura Y. On the novel use of model-based decomposition in SAR polarimetry for target detection on the sea[J]. Remote sensing letters, 2013, 4(9):843-852.
[21] Nunziata F, Migliaccio M, Brown C E. Reflection symmetry for polari-metric observation of man-made metallic targets at sea[J]. IEEE Jour-nal of Oceanic Engineering, 2012, 37(3):384-394.
[22] Velotto D, Nunziata F, Migliaccio M, et al. Dual-polarimetric Ter-raSAR-X SAR data for target at sea observation[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5):1114-1118.
[23] Chen W, Ji K, Xing X, et al. Ship recognition in high resolution SAR imagery based on feature selection[C]//Computer Vision in Remote Sensing (CVRS), 2012 International Conference on. Piscataway, NJ:IEEE, 2012:301-305.
[24] Wang C, Zhang H, Wu F, et al. A novel hierarchical ship classifier for COSMO-SkyMed SAR data[J]. IEEE Geoscience and Remote Sens-ing Letters, 2014, 11(2):484-488.
[25] Kang M, Leng X, Lin Z, et al. A modified faster R-CNN based on CFAR algorithm for SAR ship detection[C]//2017 International Work-shop on Remote Sensing with Intelligent Processing (RSIP). Piscat-away, NJ:IEEE, 2017:1-4.
[26] Xu F, Jin Y Q, Moreira A. A preliminary study on SAR advanced in-formation retrieval and scene reconstruction[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(10):1443-1447.
[27] Velotto D, Bentes C, Tings B, et al. Comparison of Sentinel-1 and Ter-raSAR-X for ship detection[C]//2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway, NJ:IEEE, 2015:3282-3285.
[28] Vachon P W, Wolfe J. GMES Sentinel-1 analysis of marine applica-tions potential(AMAP)[R/OL].[2017-08-31]. http://cradpdf.drdc-rddc.gc.ca/PDFS/unc79/p530368.pdf.
[29] Olsen R B, Wahl T. The role of wide swath SAR in high-latitude coastal management[J]. Johns Hopkins APL Technical Digest, 2000, 21(1):136-140.
[30] Smith B H. An analytic nonlinear approach to sidelobe reduction[J]. IEEE Transactions on Image Processing, 2001, 10(8):1162-1168.
[31] Liu P, Jin Y Q. A study of ship rotation effects on SAR image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6):3132-3144.
[32] Margarit G, Mallorqui J J, Fortuny-Guasch J, et al. Exploitation of ship scattering in polarimetric SAR for an improved classification un-der high clutter conditions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(4):1224-1235.
[33] Margarit G, Mallorqui J J, Fortuny-Guasch J, et al. Phenomenological vessel scattering study based on simulated inverse SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(4):1212-1223.
[34] Wang E, Kurniawati H, Kroese D P. CEMAB:A Cross-Entropy-based method for large-scale multi-armed bandits[C]//Australasian Confer-ence on Artificial Life and Computational Intelligence. Australasian:Springer International Publishing, 2017:353-365.
[35] Kroese D P, Rubinstein R Y, Cohen I, et al. Cross-entropy method[M]//Encyclopedia of Operations Research and Management Science. New York:Springer, 2013:326-333.
[36] Huang L, Liu B, Li B, et al. OpenSARShip:A dataset dedicated to Sentinel-1 ship interpretation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, in press.