Spescial Issues

Reverberation suppression and target detection for active sonar

  • HAO Chengpeng ,
  • SHI Bo ,
  • YAN Sheng ,
  • XU Da
Expand
  • Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2017-09-26

  Revised date: 2017-10-10

  Online published: 2017-10-31

Abstract

For an active sonar, the reverberation is the main interference in shallow water, and the reverberation suppression is a complicated problem in the sonar signal processing, especially when the sonar carrier moves with a certain velocity to cause the space-time coupling in the reverberation. The space-time adaptive processing (STAP) is an effective way to solve this problem, with the implicit compensation for the motional platform and it allows to obtain the most optimal performance for the reverberation suppression in the theory. This paper reviews the reverberation suppression and target detection methods for the traditional active sonar. By analyzing the difference between the sonar and the radar, the space-time adaptive processing model suitable for a moving sonar is proposed. Based on this model, the design of the robust space-time adaptive detection method is discussed. At last, the paper summarizes the prospects of the reverberation suppression and target detection methods of the moving sonar.

Cite this article

HAO Chengpeng , SHI Bo , YAN Sheng , XU Da . Reverberation suppression and target detection for active sonar[J]. Science & Technology Review, 2017 , 35(20) : 102 -108 . DOI: 10.3981/j.issn.1000-7857.2017.20.011

References

[1] 朱埜. 主动声纳检测信息原理[M]. 北京:科学出版社, 2014. Zhu Ye. Active sonar detection principle[M]. Beijing:Science Press, 2014.
[2] Etter P C. Underwater acoustic modeling and simulation[M]. 5th Edi-tion. Boca Raton, FL:Spon Press(Taylor & Francis Group), 2013:299-311.
[3] Abraham D A, Gelb J M, Oldag A W. Background and clutter mixture distributions for active sonar statistics[J]. IEEE Journal of Oceanic Engi-neering, 2011, 36(2):231-247.
[4] Abraham D A, Lyons A P. Novel physical interpretations of K-distribut-ed reverberation[J]. IEEE Journal of Oceanic Engineering, 2002, 27(4):800-813.
[5] Hodgkiss W. An oceanic reverberation model[J]. IEEE Journal of Oce-anic Engineering, 1984, 9(2):63-72.
[6] Etter P C. Underwater acoustic modeling and simulation[M]. London:Spon Press(Tay & Francis Group), 2003.
[7] Kay S M. Fundamentals of statistical signal processing:Detection theo-ry volume Ⅱ[M]. Upper Saddle Rive, NJ:Printice Hall, 1998.
[8] Klemm R. Interrelations between matched-field processing and air-borne MTI radar[J]. IEEE Journal of Oceanic Engineering, 2002, 18(3):168-180.
[9] Klemm R. Detection of slow targets by a moving active sonar acoustic signal processing for ocean exploration[M]. Dordrecht:Springer, 1993:165-170.
[10] 陈小龙, 关键, 黄勇, 等. 雷达低可观测目标探测技术[J]. 科技导报, 2017, 35(11):30-38. Chen Xiaolong, Guan Jian, Huang Yong, et al. Radar low-observable target detection[J]. Science & Technology Review, 2017, 35(11):30-38.
[11] 陈小龙, 关键, 何友, 等. 高分辨率系数表示及其在雷达动目标检测中的应用[J]. 雷达学报, 2017, 6(3):239-251. Chen Xiaolong, Guan Jian, He You, et al. High-resolution sparse rep-resentation and its applications in radar movin target detection[J]. Jour-nal of radars, 2017, 6(3):239-251.
[12] Cox H and Lai H. Geometric comb waveforms for reverberation sup-pression[C]//Proceedings of 199428th Asilomar Conference on Sig-nals, Systems and Computers. Piscataway, NJ:IEEE, 1995:1185-1189.
[13] Collins T, Atkins P. Doppler-sensitive active sonar pulse designs for reverberation processing[J]. IEE Proceedings-Radar, Sonar and Navi-gation, 1998, 145(6):347-353.
[14] 鄢社锋, 马远良. 传感器阵列波束优化设计及应用[M]. 北京:科学出版社, 2009. Yan Shefeng, Ma Yuanliang. Sensor array beampattern optimization:Theory with applications[M]. Beijing:Science Press, 2009.
[15] Capon J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 2005, 57(8):1408-1418.
[16] Cox H, Zeskind R M, Owen M M. Robust adaptive beamforming[J]. IEEE Transactions on Acoustics Speech & Signal Processing, 2008, 35(10):1365-1376.
[17] North D O. Analysis of the Factors which Determine Signal/Noise Dis-crimination in Radar[R]. Princeton, NJ:RCA Laboratories, 1943.
[18] Turin G L. An introduction to matched filters[J]. IRE Transactions on Information Theory, 1960, 6(3):311-329.
[19] Li W, Ma X, Zhu Y, et al. Detection in reverberation using space time adaptive prewhiteners[J]. Journal of the Acoustical Society of America, 2008, 124(4):EL236-242.
[20] 陈鹏, 侯朝焕, 马晓川, 等. 基于匹配滤波和离散分数阶傅里叶变换的水下动目标LFM回波联合检测[J]. 电子与信息学报, 2007, 29(10):2305-2308. Chen Peng, Hou Chaohuan, Ma Xiaochuan, et al. The joint detection to underwater moving target's LFM echo based on matched filter and discrete fractional Fourier transform[J]. Journal of Electronics & Infor-mation Technology, 2007, 29(10):2305-2308.
[21] Scharf L L, Friedlander B. Matched subspace detectors[J]. IEEE Trans-actions on Signal Processing, 1994, 42(8):2146-2157.
[22] Barbarossa S. Analysis of multicomponent LFM signals by a combined wigner-hough transform[J]. IEEE Transactions on Signal Processing, 1995, 43(6):1511-1515.
[23] 邓新文, 许琦, 高守勇. 混响背景下应用岭回归对角加载的空时处理方法[J]. 声学技术, 2011, 30(2):188-192. Deng Xinwen, Xu Qi, Gao Shouyong. Ridge-Regression-DiagonalLoading-based space-time adaptive processing for active sonar in re-verberation[J]. Technical Acoustics, 2011, 30(2):188-192.
[24] Brennan L E, Reed I S. Theory of adaptive radar[J]. IEEE Transac-tions on Aerospace & Electronic Systems, 1973, 9(2):237-252.
[25] Wang Y L, Peng Y N. Configuration and performance analysis of space-time adaptive signal processor for airborne radar[C]//Proceed-ings of the 1997 IEEE National Radar Conference. Piscataway, NJ:IEEE, 1997:343-348.
[26] Barboy B, Lomes A, Perkalski E. Cell-averaging CFAR for multiple target situation[J]. IEE Proceedings F (Communications, Radar and Signal Processing), 1986, 133(2):176-186.
[27] Rohling H. Radar CFAR thresholding in clutter and multiple target sit-uations[J]. IEEE Transactions on Aerospace & Electronic Systems, 1983, 19(4):608-621.
[28] Finn H M, Johnson R S. Adaptive detection mode with threshold con-trol as a function of spatially sampled clutter-level estimation[J]. RCA Review, 1968, 29:414-464.
[28] Liu W J, Xie W C, Wang Y L. Diagonally loaded space-time adaptive detection[C]//IEEE CIE International Conference on Radar. Piscat-away, NJ:IEEE, 2011:1115-1119.
[29] 王永良, 刘维建, 谢文冲, 等. 机载雷达空时自适应检测方法研究进展[J]. 雷达学报, 2014, 3(2):201-207. Wang Yongliang, Liu Weijian, Xie Wenchong, et al. Research prog-ress of space-time adaptive detection for airborne radar[J]. Journal of Radars, 2014, 3(2):201-207.
[30] 吕维, 王志杰, 李健辰, 等. 修正空时自适应处理在水下自导系统中的应用[J]. 兵工学报, 2012, 33(8):944-950 Lu Wei, Wang Zhijie, Li Jianchen, et al. Application of modified space-time adaptive processing in sonar[J]. Acta Armamentarii, 2012, 33(8):944-950.
[31] Klemm R. Principles of space-time adaptive processing[M]. 3rd Edi-tion. London:IET, 2006:545-561.
[32] Kelly E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace & Electronic Systems, 2007, AES-22(2):115-127.
[33] Robey F C, Fuhrmann D R, Kelly E J, et al. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace & Elec-tronic Systems, 1992, 28(1):208-216.
[34] Maio A D. Rao test for adaptive detection in gaussian interference with unknown covariance matrix[J]. IEEE Transactions on Signal Pro-cessing, 2007, 55(7):3577-3584.
[35] Shi B, Hao C H, Hou C P, et al. Parametric Rao test for multichannel adaptive detection of range-spread target in partially homogeneous en-vironments[J]. Signal Processing, 2015, 108(108):421-429.
[36] Hao C P, Shang X Q, Bandiera F, et al. Bayesian radar detection with orthogonal rejection[J]. IEICE Transactions on Fundamentals of Elec-tronics Communications & Computer Sciences, 2012, 95-A(2):596-599.
[37] Cai L J, Wang H. A persymmetric multiband GLR algorithm[J]. IEEE Transactions on Aerospace & Electronic Systems, 1992, 28(3):806-816.
[38] Mio K, Chocheyras Y, Doisy Y. Space time adaptive processing for low frequency sonar[C]//Oceans, 2000 MTS/IEEE Conference and Ex-hibition. Piscataway, NJ:IEEE, 2000, doi:10.1109/OCEANS.2000.881786.
[39] 赵申东, 唐劲松, 蔡志明. 声自导鱼雷空时自适应处理[J]. 鱼雷技术, 2008, 16(2):24-30. Zhao Shendong, Tang Jinsong, Cai Zhiming. Space time adaptive pro-cessing of acoustic homing torpedo[J]. Torpedo Technology, 2008, 16(2):24-30.
[40] 詹昊可, 蔡志明, 苑秉成. 鱼雷声呐空时自适应混响抑制方法[J]. 武汉理工大学学报(交通科学与工程版), 2007, 31(6):946-950.Zhan Haoke, Cai Zhiming, Yuan Bingcheng. Space-time adaptive re-verberation suppression in active sonar of torpedo[J]. Journal of Wu-han University of Technology(Transportation Science & Engineering), 2007, 31(6):946-950.
[41] 王磊, 朱埜, 孙长瑜. 空时处理及在混响抑制中的应用[J]. 声学技术, 2003, 22(增刊2):185-187. Wang Lei, Zhu Ye, Sun Changyu. Space-time processing and it's ap-plication in reverberation rejection[J]. Technical Acoustics, 2003, 22(Suppl 2):185-187
Outlines

/