Spescial Issues

Development of optimum coherent detection in compound-Gaussian sea clutter models

  • YU Han ,
  • SHUI Penglang ,
  • SHI Sainan ,
  • YANG Chunjiao
Expand
  • National Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China

Received date: 2017-09-25

  Revised date: 2017-10-10

  Online published: 2017-10-31

Abstract

Unlike the radar target detection in a noise background, for the target detection in the background of the sea clutter, the increase of the transmitting power would not bring about a significant performance improvement and thus a refined modeling of the sea clutter and a full exploitation of the characteristics of the sea clutter become very important to improve the performance of the target detection in the background of the sea clutter. The compound-Gaussian model is a widely recognized model to characterize the sea clutter, which provides a powerful tool to implement a refined description of the sea clutter. Moreover, the related optimum detection theory and methods with regard to this model provide the technique for improving the target detection performance in the background of the sea clutter. This paper reviews three compound-Gaussian sea clutter models, including the K distribution, the generalized Pareto distribution and the inverse Gaussian texture and the existing optimum coherent detection and the near-optimum coherent detection with these models. The current development of the optimum coherent detection in the compound-Gaussian clutter plus noise is addressed and their ‘bottleneck’ in practical applications is analyzed. At last, we discuss several possible approaches to develop near-optimum and computationally implementable detection methods.

Cite this article

YU Han , SHUI Penglang , SHI Sainan , YANG Chunjiao . Development of optimum coherent detection in compound-Gaussian sea clutter models[J]. Science & Technology Review, 2017 , 35(20) : 109 -118 . DOI: 10.3981/j.issn.1000-7857.2017.20.012

References

[1] Conte E, Maio A D, Galdi C. Statistical analysis of real clutter at differ-ent range resolutions[J]. IEEE Transactions on Aerospace and Electron-ic Systems, 2004, 40(3):903-918.
[2] Ward K D, Baker C J, Watts S. Maritime surveillance radar, Part I:Ra-dar scattering from the ocean surface[J]. IEE Proceedings-Radar, Sonar and Navigation, 1990, 137(2):51-62.
[3] Maria G, Fulvio G, Muralidhar R. Statistical analysis of measured polar metric clutter data at different resolutions[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(6):473-481.
[4] Maria G, Fulvio G, Muralidhar R, et al. Impact of the sea clutter nonsta-tionarity on disturbance covariance matrix estimation and CFAR detec-tor performance[J]. IEEE Transactions on Aerospace and Electronic Sys-tems, 2010, 46(6):1502-1513.
[5] Ward K, Tough R, Watts S. Sea clutter:Scattering, the K distribution and radar performance[M]. 2nd edition. London:The Institution of Engi-neering and Technology, 2013:17-55.
[6] 张玉石, 许心瑜, 尹雅磊, 等. L波段小擦地角海杂波幅度统计特性研究[J]. 电子与信息学报, 2014, 36(5):1044-1048. Zhang Yushi, Xu Xinyu, Yin Yalei, et al. Research on amplitude statis-tics of L-band low grazing angle sea clutter[J]. Journal of Electronics & Information Technology, 2014, 36(5):1044-1048.
[7] Sangston K J, Gini F, Greco M V, et al. Structures of radar detection in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(2):445-458.
[8] 邹鲲, 廖桂生, 李军, 等. 基于Bayes框架的复合高斯杂波下稳健检测[J]. 电子与信息学报, 2013, 35(7):1555-1561. Zou Kun, Liao Guisheng, Li Jun, et al. Robust detection in compound Gaussian clutter based on Bayesian framework[J]. Journal of Electron-ics & Information Technology, 2013, 35(7):1555-1561.
[9] Haykin S. The McMaster IPIX radar sea clutter database in 1993[EB/OL].[2017-09-01]. http://soma.crl.mcmaster.ca/ipix/.
[10] The Defence, Peace, Safety and Security Unit of the Council for Scien-tific and Industrial Research. The Fynmeet radar database[EB/OL].[2017-09-01]. http://www.csir.co.ca/small_boat_detection.
[11] Robey F C, Fuhrmann D R, Kelly E J, et al. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Elec-tronic Systems, 1992, 28(1):208-216.
[12] 时艳玲. 高距离分辨率海杂波背景下目标检测方法[D]. 西安:西安电子科技大学, 2011. Shi Yanling. Tatget detection methods in high range resolution sea clutter[D]. Xi'an:Xidian University, 2011.
[13] 张波. 海杂波环境下弱小目标检测方法研究[D]. 西安:西安电子科技大学, 2013. Zhang Bo. Research on weak target detection algorithm in sea-clutter enviroment[D]. Xi'an:Xidian University, 2013.
[14] Gini F, Greco M V, Farina A, et al. Optimum and mismatched detec-tion against K-distributed plus Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3):860-876.
[15] Dong Y. Optimal coherent radar detection in a K-distributed clutter environment[J]. IET Radar, Sonar & Navigation, 2012, 6(5):283-292.
[16] Milton A, Stegun I A. Handbook of mathematical functions with formu-las, graphs, and mathematical tables[M]. New York:Dover, 1972.
[17] Shui P L, Liu M, Xu S W. Shape-parameter dependent coherent radar target detection in K-distributed clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1):451-465.
[18] Balleri A, Nehorai A, Wang J. Maximum likelihood estimation for com-pound-Gaussian clutter with inverse gamma texture[J]. IEEE Transac-tions on Aerospace and Electronic Systems, 2007, 43(2):775-779.
[19] De A, Farina A, Foglia G. Knowledge-aided Bayesian radar detectors & their application to live data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1):170-183.
[20] Sangston K J, Gini F, Greco M V. Coherent radar target detection in heavy-tailed compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1):64-77.
[21] Mezache1 A, Chalabi I, Soltanil F, et al. Estimating the Pareto plus noise distribution parameters using non-integer order moments and[zlog(z)] approaches[J]. IET Radar, Sonar & Navigation, 2016, 10(1):192-204.
[22] Ollila E, Tyler D E, Koivunen V, et al. Compound-Gaussian clutter modeling with an inverse Gaussian texture distribution[J]. IEEE Signal Processing Letters, 2012, 19(12):876-879.
[23] Shui P L, Shi L X, Yu H, et al. Iterative maximum likelihood and out-lier-robust bipercentile estimation of parameters of compound-Gauss-ian clutter with inverse Gaussian texture[J]. IEEE Signal Processing Letters, 2016, 23(11):1572-1576.
[24] 闫亮, 孙培林, 易磊, 等. 基于逆高斯分布的复合高斯海杂波建模研究[J]. 雷达学报, 2013, 2(4):461-465. Yan Liang, Sun Peilin, Yi Lei, et al. Modeling of compound-Gaussian sea clutter based on an inverse Gaussian distribution[J]. Journal of Ra-dars, 2013, 2(4):461-465.
[25] Mezache A, Soltani F, Sahed M, et al. Model for non-rayleigh clutter amplitudes using compound inverse Gaussian distribution:An experi-mental analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1):142-153.
[26] Gao Y C, Liao G S, Zhu S Q. Adaptive signal detection in compoundGaussian clutter with inverse Gaussian texture[C]//14th International Radar Symposium (IRS). Piscataway, NJ:IEEE, 2013:935-940.
[27] Xu S W, Xue J, Shui P L. Adaptive detection of range-spread targets in compound Gaussian clutter with the square root of inverse Gauss-ian texture[J]. Digital Signal Processing, 2016, 56:132-139.
[28] Gini F. Suboptimal coherent radar detection in a mixture of K-distrib-uted and Gaussian clutter[J]. IEE Proceedings-Radar, Sonar and Navi-gation, 1997, 144(1):39-48.
[29] Blacknell D, Tough R J A. Parameter estimation for the K-distribu-tion based on[zlog(z)] [J]. IEE Proceedings-Radar, Sonar and Naviga-tion, 2001, 148(6):309-312. 30] Lombardo P, Oliver C J, Tough R J A. Effect of noise on order parame-ter estimation for K-distributed clutter[J]. IEE Proceedings-Radar, So-nar and Navigation. 1995, 142(1):33-40.
[31] Watts S. Radar detection prediction in K-distributed sea clutter and thermal noise[J]. IEEE Transactions on Aerospace and Electronic Sys-tems, 1987, 23(1):40-45.
[32] Redding N J. Estimating the parameters of the K distribution in the in-tensity domain:DSTO-TR-0839[R/OL].[2017-09-01]. http://dspace.dsto.defence.gov.au/dspace/handle/1947/4203.
[33] Weinberg G V. Asymptotic performance of the geometric mean detec-tor in Pareto distributed clutter[J]. IEEE Signal Processing Letters, 2016, 23(11):1538-1542.
[34] Li D C, Shui P L. Floating small target detection in sea clutter via nor-malized Doppler power spectrum[J]. IET Radar, Sonar & Navigation, 2016, 10(4):699-706.
[35] 刘明, 水鹏朗. 基于功率中值和归一化采样协方差矩阵的自适应匹配率波检测器[J]. 电子与信息学报, 2015, 37(6):1395-1401. Liu Ming, Shui Penglang. Adaptive matched filter detector based on power median and normalized sample covariance matrix[J]. Journal of Electronics & Information Technology, 2015, 37(6):1395-1401.
[36] Ward K D, Baker C J, Watts S. Maritime surveillance radar.Part I:Radar scattering from the ocean surface[J]. IEE Proceedings F-Radar and Signal Processing, 1990, 137(2):51-62.
[37] Moya J C, Menoyo J G, Lopez A A, et al. Statistical analysis of a highresolution sea-clutter database[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4):2024-2037.
[38] Conte E, Longo M. Characterisation of radar clutter as a spherically in-variant random process[J]. IEE Proceeding, 1987, 134(2):191-197.
[39] Rangaswamy M, Weiner D D, Ozturk A. Non-Gaussian vector identifi-cation using spherically invariant random processes[J]. IEEE Transac-tions on Aerospace and Electronic Systems, 1993, 29(1):111-124.
[40] 施赛楠, 水鹏朗, 刘明. 基于复合高斯杂波纹理结构的相干检测[J]. 电子与信息学报, 2016, 38(8):1969-1976. Shi Sainan, Shui Penglang, Liu Ming. Coherent detection based on tex-ture structure in compound-Gaussian clutter[J]. Journal of Electronics & Information Technology, 2016, 38(8):1969-1976.
[41] 施赛楠, 水鹏朗, 杨春娇, 等. 基于逆高斯纹理空间相关性的雷达目标检测[J/OL]. (2017-05-27)[2017-10-09]. http://kns.cnki.net/kcms/detail/11.2422.TN.20170527.0909.006.html. Shi Sainan, Shui Penglang, Yang Chunjiao, et al. Radar target detec-tion based on spatial correlation of inverse-Gaussian texture[J/OL]. (2017-05-27)[2017-10-09]. http://kns.cnki.net/kcms/detail/11.2422.TN.20170527.0909.006.html.
[42] Emmanuelle J, Ovarlez J P, Declercq D, et al. BORD:Bayesian opti-mum radar detector[J]. Signal Processing, 2003, 83(6):1151-1162.
[43] Gini F, Greco M. Covariance matrix estimation for CFAR detection in colored heavy tailed clutter[J]. Signal Processing, 2002, 82(12):1847-1859.
[44] 刘明. 海杂波中微弱运动目标自适应检测方法研究[D]. 西安:西安电子科技大学, 2016. Liu Ming. Research on adaptive detection methods of weak moving tar-gets in sea clutter[D]. Xi'an:Xidian University, 2016.
[45] Jakeman E, Tough R J A. Generalized K distribution:A statistical model for weak scattering[J]. Journal of the Optical Society. of Ameri-ca, 1987, 4(9):1764-1772.
[46] Jakeman E, Pusey P N. A model for Non-Rayleigh sea echo[J]. IEEE Transactions on Antennas Propagation, 1976, 24(6):806-814.
[47] Jakeman E, Pusey P N. On the statistics of K-distributed noise[J]. Royal Signals and Radar Establishment, 1980, 13:31-48
[48] Iskander D R, Zoubir A M. Estimation of the parameters of the K-dis-tribution using higher order and fractional moments[J]. IEEE Transac-tions on Aerospace and Electronic Systems, 1999, 35(4):1453-1457.
[49] Joughin I R, Percival D P, Winebrenner D P. Maximum likelihood esti-mation of K distribution for SAR data[J]. IEEE Transactions on Geo-science and Remote Sensing, 1993, 31(5):989-999.
[50] Yueh S H, Kong J A, Jao J K, et al. K distribution and polarimetric terrain radar clutter[J]. Journal of Electromagnetic Waves and Applica-tions, 1989, 3(8):747-768.
[51] Yueh S H, Kong J A, Jao J K, et al. K-distribution and multi-fre-quency polarimetric terrain radar clutter[J]. Journal of Electromagnetic Waves and Applications, 1991, 5(1):1-15.
[52] Oliver C J. Information from SAR images[J]. Journal of Physics D:Ap-plied Physics, 1991(24):1493-1514.
[53] Yueh S H, Kong J A, Shin R T. Statistical modeling for polarimetric remote sensing of earth terrain[C]. International Geoscience & Remote Sensing Symposium. Piscataway, NJ:IEEE, 1990:157-160.
[54] Raghavan R S. A method for estimating parameters of K-distributed clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(2):238-246.
[55] Gradshteyn I S, Ryzhik L M. Table of integrals, series, and products[M]. San Diego:Academic, 1980.
[56] Shui P L, Liu M. Subband adaptive GLRT-LTD for weak moving tar-gets in sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1):423-437.
[57] Bustos O H, Lucini M M, Frery A C. M-estimators of roughness and scale for modeled SAR imagery[J]. EURASIP Journal on Advances in Signal Processing, 2002(1):297-349.
[58] Frery A C, Muller H J, Yanasse C C F, et al. A model for extremely heterogeneous clutter[J]. IEEE Transactions on Geoscience and Re-mote Sensing, 1997, 35(3):648-659.
[59] Feng J, Cao A, Pi Y. Multiphase SAR image segmentation with G0-statistical-model-based active contours[J]. IEEE Transactions on Geo-science and Remote Sensing, 2013, 51(7):4190-4199.
[60] Allende H, Frery A C, Galbiati J, et al. M-estimators with asymmetric influence functions:The GA 0 distribution case[J]. Journal of Statistical Computation and Simulation, 2006, 76(11):941-956.
[61] Barnard T J, Khan F. Statistical normalization of spherically invariant non-Gaussian clutter[J]. IEEE Journal of Oceanic Engineering, 2004, 29(2):303-309.
[62] Gini F, Greco M. Texture modelling, estimation and validation using measured sea clutter data[J]. IEE Proceedings-Radar, Sonar and Navi-gation, 2002, 149(3):115-124.
[63] Farina A, Gini F, Greco M V, et al. High resolution sea clutter data:Statistical analysis of recorded live data[J]. IEE Proceedings-Radar, Sonar and Navigation, 1997, 144(3):121-130.
[64] Yu H, Shui P L, Huang Y T. Low-order moment-based estimation of shape parameter of CGIG clutter model[J]. Electronics Letters, 2016, 52(18):1561-1562.
[65] Bustos O H, Lucini M M, Frery A C. M-estimators of roughness and scale for G0-modelled SAR imagery[J]. EURASIP Journal on Applied Signal Processing, 2002, doi:10.1155/S1110865702000392.
[66] Shi S N, Shui P L. Optimum coherent detection in homogenous K-dis-tributed clutter[J]. IET Radar, Sonar & Navigation, 2016, 10(8):1477-1484.
[67] Conte E, Lops M, Ricci G. Asymptotically optimum radar detection in compound Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2):617-625.
[68] Mahot M, Forster P, Pascal F, et al. Asymptotic properties of robust covariance matrix estimates[J]. IEEE International Workshop on Com-putational Advances in Multi-sensor Adaptive Processing, 2013, 61(13):3348-3356.
[69] Richmond C D. Performance of the adaptive sidelobe blanker detec-tion algorithm in homogeneous environments[J]. IEEE Transactions on Signal Processing, 2000, 48(5):1235-1247.
[70] Zhao Y N, Pang XY, Yin B. Adaptive radar detection for targets in compound-Gaussian clutter with inverse gamma texture[C]//Proceed-ings of the IET International Radar Conference. London:The Institu-tion of Engineering and Technology, 2013:1-4.
[71] Moya J C, Menoyo J G, Lopoez AA, et al. Small target detection in high resolution heterog-eneous sea clutter:An empirical analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3):1880-1898.
[72] Chen X L, Cai Y, Cai F Q. Application of the sparse decomposition to micro motion target detection embedded in sea clutter[C]//2013 Inter-national Conference on Radar. Piscataway, NJ:IEEE, 2013:163-166.
[73] Zhao Z J, Xu R L, Huang Y, et al. New nonparametric detectors un-der K-distributed Sea clutter in radar applications[C]//2011 IEEE CIE International Conference on Radar. Piscataway, NJ:IEEE, 2011:1752-1755.
[74] Conte E, Lops M, Ricci G. Adaptive detection schemes in compoundGaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3):1058-1069.
[75] Bidon S, Besson O, Tourneret J Y. A Bayesian approach to adaptive detection in nonhomogeneous environments[J]. IEEE Transactions on. Signal Processing, 2008, 56(1):205-217.
[76] Conte E, Maio A D, Farina A. Design and analysis of a knowledgeaided radar detector for Doppler processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3):1058-1079.
[77] Zhang Y, Qian S, Thayaparan T. Detection of a maneuvering air target in strong sea clutter via joint time-frequency representation[J]. IET Signal Process, 2008, 2(3):216-222.
[78] Guan J Chen X L, Huang Y. Adaptive fractional Fourier transformbased detection algorithm for moving target in heavy sea clutter[J]. IET Radar, Sonar & Navigation, 2012, 6(5):389-401.
[79] Moya J C, Maio A D, Menoyo J G. High resolution sea clutter and mar-itime target data:Experimental performance of distributed target coher-ent detectors[C]//IEEE Radar conference. Piscataway, NJ:IEEE, 2011:383-388.
[80] Vakily V T, Vahedi M. Sea clutter modeling improvement and target detection by tsallis distribution[C]. International conference on digital object identifier. Piscataway, NJ:IEEE, 2009:715-719.
[81] Farina A, Gini F, Greco M V. Optimum and sub-optimum coherent ra-dar detection in compound Gaussian clutter:A data dependent thresh-old interpretation[C]//IEEE 1996 national radar conference. Piscat-away, NJ:IEEE, 1996:160-165.
[82] Shi Y L, Shui P L. Target detection in high-resolution sea clutter via block-adaptive clutter suppression[J]. IET Radar, Sonar & Navigation, 201l, 5(1):48-57.
[83] Liu J Y, Meng H D. Radar sea clutter suppression and target detec-tion with α-β-γ filter[C]//9th International conference on Signal Pro-cessing. Piscataway, NJ:IEEE, 2008:2376-2379.
[84] Greco M, Gini F, Rangaswamy M, et al. Non-stationary sea clutter:Im-pact on disturbance covariance matrix estimate and detector CFAR[C]//International conference on Radar. Piscataway, NJ:IEEE, 2008:558-562.
[85] Jin Y W. A CFAR adaptive subspace detector for second-order Gauss-ian signals[J]. IEEE Transactions on Signal Processing, 2005, 53(3):871-884.
[86] Van Cao T T. Design of low-loss CFAR detectors[C]//International Conference on Radar. Piscataway, NJ:IEEE, 2008:712-717.
[87] Chen S J, Kong L J, Yang J Y. Adaptive detection in compoundGaussian clutter with partially correlated texture[C]//Proceeding of the 2013 IEEE Radar Conference. Piscataway, NJ:IEEE 2013:1-5.
[88] Carta P, Galati G, Piracci E G, et al. Implementation of the ubiquitous radar concept with a conformal array[C]//2015 European Radar Confer-ence. Piscataway, NJ:IEEE, 2015.
Outlines

/